1
|
Gandra UR, Axthelm J, Bellstedt P, Singh A, Schiller A, Mohideen MIH, Mandal AK. 19F NMR Probes: Molecular Logic Material Implications for the Anion Discrimination and Chemodosimetric Approach for Selective Detection of H 2O 2. Anal Chem 2024; 96:11232-11238. [PMID: 38961620 DOI: 10.1021/acs.analchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Detection and discrimination of similar solvation energies of bioanalytes are vital in medical and practical applications. Currently, various advanced techniques are equipped to recognize these crucial bioanalytes. Each strategy has its own benefits and limitations. One-dimensional response, lack of discrimination power for anions, and reactive oxygen species (ROS) generally limit the utilized fluorescent probe. Therefore, a cutting-edge, refined method is expected to conquer these limitations. The use of 19F NMR spectroscopy for detecting and discriminating essential analytes in practical applications is an emerging technique. As an alternative strategy, we report two fluorinated boronic acid-appended pyridinium salts 5-F-o-BBBpy (1) and 5-CF3-o-BBBpy (2). Probe (1) acts as a chemosensor for identifying and discriminating inorganic anions with similar solvation energies with strong bidirectional 19F shifts in the lower ppm range. Probe (2) turns as a chemo dosimeter for the selective detection and precise quantification of hydrogen peroxide (H2O2) among other competing ROS. To demonstrate real-life applicability, we successfully quantified H2O2 via probe (2) in different pharmaceutical, dental, and cosmetic samples. We found that tuning the -F/-CF3 moiety to the arene boronic acid enables the π-conjugation, a crucial prerequisite for the discrimination of anions and H2O2. Characteristic 19F NMR fingerprints in the presence of anions revealed a complementary implication (IMP)/not implication (NIMP) logic function. Finally, the 16 distinct binary Boolean operations on two logic values are defined for "functional completeness" using the special property of the IMP gate. Boolean logic's ability to handle information by utilizing characteristic 19F NMR fingerprints has not been seen previously in a single chemical platform for detecting and differentiating such anions.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jörg Axthelm
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Peter Bellstedt
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Akanksha Singh
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Kawasue S, Kuniyoshi K, Uema M, Oshiro N. Tetrodotoxin Derivatization with a Newly Designed Boron Reagent Leads to Conventional Reversed-Phase Liquid Chromatography. Toxins (Basel) 2024; 16:260. [PMID: 38922154 PMCID: PMC11209320 DOI: 10.3390/toxins16060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Tetrodotoxin (TTX) is a representative natural toxin causing pufferfish food poisoning, which is especially prominent in East and Southeast Asia, including Japan. TTX has been analyzed through post-column derivatization high-performance liquid chromatography (HPLC), ion-pair LC-MS(/MS), and hydrophilic interaction liquid chromatography (HILIC)-MS(/MS) as alternatives to the mouse bioassay method. However, post-column derivatization requires a system for online derivatization reactions, and with the ion-pair LC-MS approach, it is difficult to remove residual ion-pair reagents remaining in the equipment. Moreover, HILIC-MS provides poor separation compared to reversed-phase (RP) HPLC and requires a long time to reach equilibration. Therefore, we decided to develop a TTX analytical method using pre-column derivatization and RP HPLC for the rapid assessment of outbreak samples, including food remnants. In this study, we focused on the vic-diol moiety of TTX and designed a new derivatization reagent coded as NBD-H-DAB. This NBD-H-DAB was synthesized from 4-hydrazino-7-nitro-2,1,3-benzoxadiazole (NBD-H) and 3-fluoro-2-formylphenylboronic acid (FFPBA) with a simple reaction system and rapidly converted to its boronate form, coded NBD-H-PBA, in an aqueous reaction solution. The NBD-H-PBA demonstrated appropriate hydrophobicity to be retained on the RP analytical column and successfully detected with a UV spectrometer. It was easily reacted with the vic-diol moiety of TTX (C6 and C11) to synthesized a boronic ester. The derivatized TTX could be detected using the RP HPLC-UV, and the limit of detection in the fish flesh samples was 0.06 mg/kg. This novel pre-column derivatization of TTX with NBD-H-PBA proves capable for the analysis of TTX.
Collapse
Affiliation(s)
- Shimba Kawasue
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (K.K.); (M.U.)
| | | | | | - Naomasa Oshiro
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (K.K.); (M.U.)
| |
Collapse
|
3
|
Groleau R, Chapman RSL, Lowe JP, Lyall CL, Kociok-Köhn G, James TD, Bull SD. BINOL as a Chiral Solvating Agent for Sulfiniminoboronic Acids. Anal Chem 2023; 95:16801-16809. [PMID: 37931004 PMCID: PMC10666087 DOI: 10.1021/acs.analchem.3c01613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
1H NMR spectroscopic studies using BINOL as a chiral solvating agent (CSA) for a scalemic sulfiniminoboronic acid (SIBA) have revealed concentration- and enantiopurity-dependent variations in the chemical shifts of diagnostic imine protons used to determine enantiopurity levels. 11B/15N NMR spectroscopic studies and X-ray structural investigations revealed that unlike other iminoboronate species, BINOL-SIBA assemblies do not contain N-B coordination bonds, with 1H NMR NOESY experiments indicating that intermolecular H-bonding networks between BINOL and the SIBA analyte are responsible for these variations. These effects can lead to diastereomeric signal overlap at certain er values that could potentially lead to enantiopurity/configuration misassignments. Consequently, it is recommended that hydrogen-bonding-CSA-based 1H NMR protocols should be repeated using both CSA enantiomers to ensure that any concentration- and/or er-dependent variations in diagnostic chemical shifts are accounted for when determining the enantiopurity of a scalemic analyte.
Collapse
Affiliation(s)
- Robin
R. Groleau
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - John P. Lowe
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Catherine L. Lyall
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Tony D. James
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xianxiang 453007, China
| | - Steven D. Bull
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| |
Collapse
|
4
|
A novel C6-sulfonated celastrol analog as a tyrosinase and melanin inhibitor: Design, synthesis, biological evaluation and molecular simulation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Adamczyk-Woźniak A, Sporzyński A. Merging Electron Deficient Boronic Centers with Electron-Withdrawing Fluorine Substituents Results in Unique Properties of Fluorinated Phenylboronic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113427. [PMID: 35684365 PMCID: PMC9182515 DOI: 10.3390/molecules27113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Fluorinated boron species are a very important group of organoboron compounds used first of all as receptors of important bioanalytes, as well as biologically active substances, including Tavaborole as an antifungal drug. The presence of substituents containing fluorine atoms increases the acidity of boronic compounds, which is crucial from the point of view of their interactions with analytes or certain pathogen's enzymes. The review discusses the electron acceptor properties of fluorinated boronic species using both the acidity constant (pKa) and acceptor number (AN) in connection with their structural parameters. The NMR spectroscopic data are also presented, with particular emphasis on 19F resonance due to the wide range of information that can be obtained from this technique. Equilibria in solutions, such as the dehydration of boronic acid to form boroxines and their esterification or cyclization with the formation of 3-hydroxyl benzoxaboroles, are discussed. The results of the latest research on the biological activity of boronic compounds by experimental in vitro methods and theoretical calculations using docking studies are also discussed.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| | - Andrzej Sporzyński
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| |
Collapse
|
6
|
Adamczyk-Woźniak A, Tarkowska M, Lazar Z, Kaczorowska E, Madura ID, Maria Dąbrowska A, Lipok J, Wieczorek D. Synthesis, structure, properties and antimicrobial activity of para trifluoromethyl phenylboronic derivatives. Bioorg Chem 2021; 119:105560. [PMID: 34942467 DOI: 10.1016/j.bioorg.2021.105560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 01/16/2023]
Abstract
The [2-formyl-4-(trifluoromethyl)phenyl]boronic acid as well as its benzoxaborole and bis(benzoxaborole) derivatives were obtained and their properties studied. The 2-formyl compound displays an unusual structure in the crystalline state, with a significant twist of the boronic group, whereas in DMSO solution it tautomerizes with formation of a cyclic isomer. All the studied compounds exhibit relatively high acidity as well as a reasonable antimicrobial activity. Docking studies showed interactions of all the investigated compounds with the binding pocket of Candida albicans LeuRS. High activity against Bacillus cereus was determined for the 2-formyl compound as well as for the novel bis(benzoxaborole), whereas the studied benzoxaborole shows high antifungal action with MIC values equal to 7.8and 3.9 μg/mL against C. albicans and A. niger respectively. None of the studied compounds exhibits reasonable activity against E. coli.
Collapse
Affiliation(s)
| | - Magdalena Tarkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Zofia Lazar
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Izabela D Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Anna Maria Dąbrowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| |
Collapse
|
7
|
Groleau RR, James TD, Bull SD. The Bull-James assembly: Efficient iminoboronate complex formation for chiral derivatization and supramolecular assembly. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Connor MC, Glass BH, Finkenstaedt-Quinn SA, Shultz GV. Developing Expertise in 1H NMR Spectral Interpretation. J Org Chem 2021; 86:1385-1395. [PMID: 33356251 DOI: 10.1021/acs.joc.0c01398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advancements in organic chemistry depend upon chemists' ability to interpret NMR spectra, though research demonstrates that cultivating such proficiency requires years of graduate-level study. The organic chemistry community thus needs insight into how this expertise develops to expedite learning among its newest members. This study investigated undergraduate and doctoral chemistry students' understanding and information processing during the interpretation of 1H NMR spectra and complementary IR spectra. Eighteen undergraduate and seven doctoral chemistry students evaluated the outcome of a series of syntheses using spectra corresponding to the products. Eye movements were measured to identify differences in cognitive processes between undergraduate and doctoral participants, and interviews were conducted to elucidate the chemical assumptions that guided participants' reasoning. Results suggest five areas of understanding are necessary for interpreting spectra, and progress in understanding corresponds to increasing knowledge of experimental and implicit chemical variables. Undergraduate participants exhibited uninformed bidirectional processing of all information, whereas doctoral participants exhibited informed unidirectional processing of relevant information. These findings imply the community can support novices' development of expertise by cultivating relevant understanding and encouraging use of informed interpretation strategies, including preliminary evaluation of relevant variables, prediction of expected spectral features, and search for complementary data across spectra.
Collapse
Affiliation(s)
- Megan C Connor
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Benjamin H Glass
- Department of Biology, University of Pennsylvania, Philladelphia, Pennsylvania 19104, United States
| | - Solaire A Finkenstaedt-Quinn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ginger V Shultz
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|