1
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Kundu S, Ghosh C, Metya A, Banerjee A, Maji MS. Carbazoquinocin Analogues as Small Molecule Biomimetic Organocatalysts in Dehydrogenative Coupling of Amines. Org Lett 2024; 26:1705-1710. [PMID: 38373273 DOI: 10.1021/acs.orglett.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A new series of carbazole-cored biomimetic ortho-quinone catalysts structurally resembling carbazoquinocin alkaloids have been introduced to promote tunable, metal cocatalyst-free, organocatalytic, dehydrogenative amine oxidation under aerobic conditions. Differently substituted benzyl amines were tolerated under optimized conditions to provide imines in excellent yields. Further efficacy of the catalyst was demonstrated by synthesizing cross-coupled imines efficiently. Control experiments and in-depth DFT studies disclosed a covalent transamination pathway as a plausible mechanism for this newly developed catalytic system.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Chayan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhisek Metya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Munawar S, Zahoor AF, Mansha A, Bokhari TH, Irfan A. Update on novel synthetic approaches towards the construction of carbazole nuclei: a review. RSC Adv 2024; 14:2929-2946. [PMID: 38239436 PMCID: PMC10794906 DOI: 10.1039/d3ra07270c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The carbazole scaffold is a significant entity in organic compounds due to its variety of biological and synthetic applications. Traditionally, carbazole skeletons have been synthesized either via the Grabe-Ullman method, Clemo-Perkin method or Tauber method. With the passage of time, these methods have been modified and explored to accomplish the synthesis of target compounds. These methods include hydroarylations, C-H activations, annulations and cyclization reactions mediated by a variety of catalysts to construct carbazole-based compounds. This brief review article intends to provide recent updates on important methodological developments reported for the synthesis of carbazole nuclei covering 2019-2023.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Tanveer Hussain Bokhari
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
| |
Collapse
|
4
|
Xie JM, Zhu YL, Fu YM, Zhu CF, Cheng LJ, You YE, Wu X, Li YG. Gold-Catalyzed Cascade Reaction of 2-Alkynyl Aryl Azides with Enecarbamates for Direct Synthesis of α-(3-Indolyl)ketones. Org Lett 2023; 25:421-425. [PMID: 36622839 DOI: 10.1021/acs.orglett.2c04147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
α-(3-Indolyl)ketones are essential building blocks for the generation of biologically active molecules. We described a new method for the direct assembly of α-(3-indolyl)ketones through the cascade reaction of 2-alkynyl aryl azides with enecarbamates, in which the in situ generated α-imino gold carbene intermediate was trapped by enecarbamate to achieve umpolung reactivity of indole at the 3-position.
Collapse
Affiliation(s)
- Jin-Ming Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Yun-Long Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Yan-Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Cheng-Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Lan-Jun Cheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Yang-En You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - You-Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| |
Collapse
|
5
|
Kundu S, Roy L, Maji MS. Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Org Lett 2022; 24:9001-9006. [PMID: 36469513 DOI: 10.1021/acs.orglett.2c03600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benzoperylenocarbazole (BPC), a unique carbazole-based organophotocatalyst, is reported herein as a potent organo-photoreductant. Lower excited state oxidation potential (-2.0 V vs SCE) and reasonable excited state lifetime (4.61 ns) render BPC an effective photosensitizer. Under irradiation of blue light employing low catalyst loading (0.5 mol %), a plethora of vicinal diols and diamines were synthesized in excellent yields through reductive coupling of carbonyls and imines, respectively. Insight about the electronic structure of BPC was obtained by DFT calculations.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
6
|
Chen C, Jiao H, Chen D, Tang T, Xu ZF, Duan S, Li CY. Access to tetrahydrocarbazoles and pyrrolo[3,4- b]carbazoles through sequential reactions of triazoles and indoles. Org Biomol Chem 2022; 20:2802-2807. [PMID: 35311858 DOI: 10.1039/d2ob00164k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tetrahydrocarbazoles and pyrrolo[3,4-b]carbazoles could be synthesized conveniently through sequential reactions of ester-tethered 1-sulfonyl-1,2,3-triazoles and indoles. The reaction conditions were mild and the procedures were quite simple. Moreover, the key intermediate α,β-unsaturated imine acted as a [2C] synthon in the [4 + 2] cycloaddition reaction, and the imino group could be used as a nucleophile to construct the fourth ring.
Collapse
Affiliation(s)
- Cong Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Hongjian Jiao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Di Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Tao Tang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ze-Feng Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Shengguo Duan
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Chuan-Ying Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Huang W, Liu F, Wang K, Sidorenko A, Bei M, Zhang Z, Fang W, Li M, Gu Y, Ke S. Sc(OTf)3-catalyzed synthesis of polysubstituted furans from acylacetonitriles and renewable acetol. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Banerjee A, Saha S, Maji MS. Cascade Benzannulation Approach for the Syntheses of Lipocarbazoles, Carbazomycins, and Related Alkaloids. J Org Chem 2022; 87:4343-4359. [PMID: 35253429 DOI: 10.1021/acs.joc.2c00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shuvendu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
9
|
Kumar J, Ahmed A, Kumar S, Raheem S, Rizvi MA, Shah BA. Visible light-mediated synthesis of α-alkoxy/hydroxy diarylacetaldehydes from terminal alkynes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-mediated approach enabling the use of alcohols as nucleophiles in a one-step synthesis of α-alkoxy/hydroxy diarylacetaldehydes is reported.
Collapse
Affiliation(s)
- Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Ajaz Ahmed
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sourav Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| |
Collapse
|
10
|
Faltracco M, Damian M, Ruijter E. Synthesis of Carbazoles and Dihydrocarbazoles by a Divergent Cascade Reaction of Donor-Acceptor Cyclopropanes. Org Lett 2021; 23:7592-7596. [PMID: 34543040 PMCID: PMC8491164 DOI: 10.1021/acs.orglett.1c02795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An alkylation/olefination
cascade of indolecarboxaldehydes and
phosphonate-functionalized donor–acceptor cyclopropanes affords
functionalized dihydrocarbazoles and cyclohepta[cd]indoles in formal (3 + 3) and (4 + 3) cycloadditions. A minor modification
to the reaction conditions also allows access to the fully aromatic
heterocyclic scaffolds by thermal loss of an electron-rich aryl moiety.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Matteo Damian
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Lupidi G, Bassetti B, Ballini R, Petrini M, Palmieri A. A New and Effective One‐Pot Synthesis of Polysubstituted Carbazoles Starting from β‐Nitro‐β,γ‐Unsaturated‐Ketones and Indoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabriele Lupidi
- Green Chemistry Group School of Sciences and Technology Chemistry Division University of Camerino Via S. Agostino n. 1 MC 62032 Camerino Italy
| | - Benedetta Bassetti
- Green Chemistry Group School of Sciences and Technology Chemistry Division University of Camerino Via S. Agostino n. 1 MC 62032 Camerino Italy
| | - Roberto Ballini
- Green Chemistry Group School of Sciences and Technology Chemistry Division University of Camerino Via S. Agostino n. 1 MC 62032 Camerino Italy
| | - Marino Petrini
- Green Chemistry Group School of Sciences and Technology Chemistry Division University of Camerino Via S. Agostino n. 1 MC 62032 Camerino Italy
| | - Alessandro Palmieri
- Green Chemistry Group School of Sciences and Technology Chemistry Division University of Camerino Via S. Agostino n. 1 MC 62032 Camerino Italy
| |
Collapse
|
12
|
Kundu S, Banerjee A, Pal SC, Ghosh M, Maji MS. Cascade annulative π-extension for the rapid construction of carbazole based polyaromatic hydrocarbons. Chem Commun (Camb) 2021; 57:5762-5765. [PMID: 34008629 DOI: 10.1039/d1cc00668a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A Brønsted acid catalyzed cascade benzannulation strategy for the one-pot synthesis of densely populated poly-aryl benzo[a]carbazole architectures is disclosed from easily affordable fundamental commodities. The efficacy of this technique was further validated via the concise synthesis of structurally unique carbazole based poly-aromatic hydrocarbons. Furthermore, the photo-physical properties of the synthesized compounds are thoroughly investigated.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|
13
|
Zhan SC, Fang RJ, Sun J, Yan CG. Multicomponent Reaction for Diastereoselective Synthesis of Spiro[carbazole-3,4'-pyrazoles] and Spiro[carbazole-3,4'-thiazoles]. J Org Chem 2021; 86:8726-8741. [PMID: 34111925 DOI: 10.1021/acs.joc.1c00538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the presence of copper sulfate, the three-component reaction of aromatic aldehydes, ethylindole-3-acetate and 4-arylidene-5-methyl-2-phenylpyrazol-3-ones, in refluxing toluene afforded spiro[carbazole-3,4'-pyrazoles] in good yields with high diastereoselectivity. More importantly, the similar CuSO4 promoted the four-component reaction of two molecular aromatic aldehydes with ethylindole-3-acetate and 5-methyl-2-phenyl-pyrazol-3-one resulted in 2,4-diarylspiro[carbazole-3,4'-pyrazoles] in satisfactory yields. Additionally, CuSO4 promoted the four-component reaction of two molecular aromatic aldehydes, ethylindole-3-acetate and 2-phenylthiazol-4-one, in refluxing toluene gave 2,4-diarylspiro[carbazole-3,4'-thiazoles] with diastereomeric ratios in the range of 3:1 to 20:1.
Collapse
Affiliation(s)
- Shao-Cong Zhan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ren-Jie Fang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
14
|
Faltracco M, Ortega-Rosales S, Janssen E, Cioc RC, Vande Velde CML, Ruijter E. Synthesis of Carbazoles by a Diverted Bischler-Napieralski Cascade Reaction. Org Lett 2021; 23:3100-3104. [PMID: 33787266 PMCID: PMC8056386 DOI: 10.1021/acs.orglett.1c00785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
An unforeseen twist
in a seemingly trivial Bischler–Napieralski
reaction led to the selective formation of an unexpected carbazole
product. The reaction proved to be general, providing access to a
range of diversely substituted carbazoles from readily available substrates.
Judicious variation of substituents revealed a complex cascade mechanism
comprising no less than 10 elementary steps, that could be diverted
in multiple ways toward various other carbazole derivatives.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Said Ortega-Rosales
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Elwin Janssen
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Răzvan C Cioc
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Christophe M L Vande Velde
- Faculty of Applied Engineering, iPRACS, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Wei B, Dong K, Zhang J, Zu L. Harnessing the chemistry of 4a H-carbazoles: a consecutive rearrangements approach to carbazoles. Org Chem Front 2021. [DOI: 10.1039/d1qo01053k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a mild method for the synthesis of 4aH-carbazole intermediates with significant synthetic flexibility and variability, and demonstrate the controllable rearrangements of such intermediates to carbazoles.
Collapse
Affiliation(s)
- Bei Wei
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Kaikai Dong
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
|
17
|
Banerjee A, Kundu S, Bhattacharyya A, Sahu S, Maji MS. Benzannulation strategies for the synthesis of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines. Org Chem Front 2021. [DOI: 10.1039/d1qo00092f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents a critical and authoritative analysis of several exciting benzannulation approaches developed in the past decade for the construction of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines.
Collapse
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Kundu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Arya Bhattacharyya
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Sahu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Modhu Sudan Maji
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
18
|
Martínez-Lara F, Suárez A, Suárez-Pantiga S, Tapia MJ, Sanz R. Straight access to highly fluorescent angular indolocarbazoles via merging Au- and Mo-catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00405g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A straightforward and efficient synthesis of the two less explored types of indolocarbazoles has been developed giving rise to highly fluorescent compounds with fluorescence quantum yields around 0.7.
Collapse
Affiliation(s)
| | - Anisley Suárez
- Departamento de Química
- Facultad de Ciencias
- Universidad de Burgos
- 09001-Burgos
- Spain
| | | | - M. José Tapia
- Departamento de Química
- Facultad de Ciencias
- Universidad de Burgos
- 09001-Burgos
- Spain
| | - Roberto Sanz
- Departamento de Química
- Facultad de Ciencias
- Universidad de Burgos
- 09001-Burgos
- Spain
| |
Collapse
|