1
|
Zhang J, Yang H, Sun L, Guo Y, Zhang G, Wang R, Szostak M. Site-Selective Copper- N-Heterocyclic Carbene-Catalyzed C(sp 2)-C(sp) Cross-Coupling of Aryl Thianthrenium Salts. Org Lett 2025; 27:3440-3445. [PMID: 40123084 DOI: 10.1021/acs.orglett.5c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This work demonstrates Cu-NHC (NHC = N-heterocyclic carbene) catalyzed alkynylation of aryl thianthrenium salts via thiazol-2-ylidene ligands, achieving a Pd-free Sonogashira coupling with broad substrate compatibility and functional group tolerance. Late-stage pharmaceutical alkynylation and rare alkynylative C-H functionalization/ring-opening pathways are enabled. Thiazol-2-ylidenes, featuring a "half-umbrella"-shaped geometry, exhibit superior catalytic performance over traditional imidazol-2-ylidenes, underscoring their unique ligand efficacy. Cu-NHC catalysis enables the use of aryl thianthrenium salts as versatile electrophiles for diverse cross-couplings under mild conditions.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hang Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Li Sun
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Guo
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Gaopeng Zhang
- Kaili Catalyst & New Materials CO., LTD, Shaanxi Key Laboratory of Catalytic Materials and Technology, Xi'an 710299, China
| | - Ruihong Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Yadav SK, Jeganmohan M. Ir(III)-Catalyzed Tandem Annulation of Aromatic Amides with 1,6-Diynes via Dual C-H Bond Activation. Org Lett 2024; 26:7809-7816. [PMID: 39255330 DOI: 10.1021/acs.orglett.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
An Ir(III)-catalyzed annulation of aryl amides with 1,6-diynes via ortho- as well as meta-dual C-H bond activation reaction is reported. The scope of the annulation reaction was examined with various substituted aryl amides, as well as 1,6-diynes. In this protocol, 1,6-diynes exhibit diverse reactivity compared with internal alkynes. It is important to note that the three C-C bond formation takes place consecutively via ortho followed by meta-dual C-H bond annulation by using a weak chelating group in one pot. A possible catalytic reaction mechanism was proposed to account for the annulation reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
3
|
Yadav SK, Jeganmohan M. Co(III)-catalyzed regioselective benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation. Chem Commun (Camb) 2024; 60:8296-8299. [PMID: 39023786 DOI: 10.1039/d4cc01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A Co(III)-catalyzed site-selective C5 and C6 benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation has been reported. The scope of the benzannulation reaction was examined with various substituted 2-pyridyl pyridones and 1,6-diynes. The combination of cuprous acetate and silver carbonate plays a crucial role in the success of the reaction. A plausible reaction mechanism was proposed and supported by deuterium labelling studies and radical trapping experiments.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
5
|
Tang JJ, Zhao MY, Lin YJ, Yang LH, Xie LY. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024; 29:997. [PMID: 38474508 DOI: 10.3390/molecules29050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.
Collapse
Affiliation(s)
- Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
6
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
7
|
Alkubaisi BO, Ravi A, Srikanth G, Sebastian A, Khanfar MA, El-Gamal MI, Sieburth SM, Shahin AI, Al-Tel TH. Divergent Protocol for the Synthesis of Isoquinolino[1,2- b]quinazolinone and Isoquinolino[2,1- a]quinazolinone Derivatives. J Org Chem 2023; 88:4244-4253. [PMID: 36926917 DOI: 10.1021/acs.joc.2c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The development of robust and step-economic strategies to access structurally diverse drug-like compound collections remains a challenge. A distinct structural option that constitutes the core scaffold of many biologically significant molecules is the quinazolinone ring system. Several members of this family of privileged substructures have gained attention due to their diverse biological activities. In this context, the development of an efficient strategy for their access is needed. Herein, we report a divergent metal-free operation to access a diverse collection of C6-substituted pyrrolo[4',3',2':4,5]isoquinolino[1,2-b]quinazolin-8(6H)-one and pyrrolo[4',3',2':4,5]isoquinolino[2,1-a]quinazolin-12(6H)-one architectures. The described cascade unites Friedel-Crafts and aza-Michael addition reactions. This operationally simple protocol enables a rapid access to these scaffolds and is compatible with a wide scope of starting materials. In addition, the cascade features a promising approach for the design of unique compound libraries for drug design and discovery programs.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anil Ravi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Monther A Khanfar
- College of Science, Department of Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Scott McN Sieburth
- Department of Chemistry, Temple University, 201 Beury Hall, Philadelphia, Pennsylvania 19122, United States
| | - Afnan I Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
8
|
Jena S, Choudhury B, Ahmad MG, Balamurali MM, Chanda K. Photophysical evaluation on the electronic properties of synthesized biologically significant pyrido fused imidazo[4,5-c]quinolines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122081. [PMID: 36379086 DOI: 10.1016/j.saa.2022.122081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
A single pot microwave assisted method was employed to synthesize a series of novel pyrido fused imidazo[4,5-c]quinolines. The electronic properties of these derivatives were investigated by following their photophysical behaviour under isolated and solvated conditions via computational and experimental approaches. The solvatochromic effect of these derivatives was investigated in the ground and excited singlet states by following the absorption and fluorescence emission and excitation spectra. Further the effect of general and specific solvent effects were also investigated by plotting Stokes shift against Lippert-Mataga, ET(30) and Kamlet-Taft polarity parameters respectively. The deviation from linearity in ET(30) plot indicates that formation of different species in polar protic solvents. The biological applications of these derivatives as potential drug candidates were evaluated by in silico computational methods followed by pharmacokinetic properties predictions. The ability of these derivatives to inhibit human casein kinase 2 (CK2) was evaluated. The structure activity relationships were correlated by evaluating the electronic properties through experimental photophysical investigations including solvatochromic effect and computational electronic structure calculations. Of the various derivatives, p-nitro phenyl substituted pyrido fused imidazo[4,5-c]quinoline exhibited good inhibitory activity against CK2 enzyme and hence could serve as a promising drug candidate.
Collapse
Affiliation(s)
- Sushovan Jena
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Badruzzaman Choudhury
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - M M Balamurali
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600 127, Tamil Nadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
9
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
10
|
Pang B, Wang Y, Hao L, Wu G, Ma Z, Ji Y. Tandem C-C/C-N Bond Formation via Rh(III)-Catalyzed α-Fluoroalkenylation and Sequential Annulation of 2-Arylquinazolinones and gem-Difluorostyrenes. J Org Chem 2023; 88:143-153. [PMID: 36563294 DOI: 10.1021/acs.joc.2c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient method of Rh(III)-catalyzed coupling reaction between 2-arylquinazolinones and gem-difluorostyrenes has been developed. In this work, two diverse structures of monofluoroalkenes and isoindolo[1,2-b]quinazolin-10(12H)-one derivatives were respectively synthesized by controlling the amount of additives (Ca(OH)2 and AgNTf2) to achieve controlled stepwise breaking of the C-F bonds of gem-difluorostyrenes. This reaction has the characteristics of a wide range of substrates and good functional group tolerance. Meanwhile, several control experiments were conducted and a plausible mechanism was proposed.
Collapse
Affiliation(s)
- Binghan Pang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yangyang Wang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liqiang Hao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Gaorong Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhihong Ma
- Biotalk Co., LTD, Shanghai 200092, China
| | - Yafei Ji
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
11
|
Pasuparthy SD, Maiti B. [CMMIM][BF 4 -] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno[4,3- d]pyrido[1,2- a]pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS OMEGA 2022; 7:39147-39158. [PMID: 36340130 PMCID: PMC9631728 DOI: 10.1021/acsomega.2c05015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Herein, we have developed a novel synthetic route for the synthesis of chromeno[4,3-d]pyrido[1,2-a]pyrimidin-6-one derivatives 8a-q using an acid ionic liquid [CMMIM][BF4 -] 4 via one-pot, three-component synthesis in aqueous ethanol at room temperature. A series of 17 derivatives have been successfully prepared with up to 93% yield. All the synthesized derivatives were well characterized using 1H-NMR, 13C-NMR, and FT-IR spectral techniques. Additionally, the photophysical properties of 12 selected derivatives including molar extinction coefficient (ε), Stokes shift (Δυ̅), and quantum yield (Φ) varying from 0.52095 × 104 to 0.93248 × 104, 4216 to 4668 cm-1, and 0.0088 to 0.0459, respectively, have been determined. Furthermore, the experimental data are supported by density functional theory (DFT) and time-dependent DFT calculations. Theoretical investigations showed a trend similar to experimental results.
Collapse
|
12
|
Dasmahapatra U, Kumar CK, Das S, Subramanian PT, Murali P, Isaac AE, Ramanathan K, MM B, Chanda K. In-silico molecular modelling, MM/GBSA binding free energy and molecular dynamics simulation study of novel pyrido fused imidazo[4,5-c]quinolines as potential anti-tumor agents. Front Chem 2022; 10:991369. [PMID: 36247684 PMCID: PMC9566731 DOI: 10.3389/fchem.2022.991369] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
With an alarming increase in the number of cancer patients and a variety of tumors, it is high time for intensive investigation on more efficient and potent anti-tumor agents. Though numerous agents have enriched the literature, still there exist challenges, with the availability of different targets and possible cross-reactivity. Herein we have chosen the phosphoinositide 3-kinase (PI3K) as the target of interest and investigated the potential of pyrido fused imidazo[4,5-c]quinoline derivatives to bind strongly to the active site, thereby inhibiting the progression of various types of tumors. The AutoDock, Glide and the Prime-MM/GBSA analysis are used to execute the molecular docking investigation and validation for the designed compounds. The anti-tumor property evaluations were carried out by using PASS algorithm. Based on the GLIDE score, the binding affinity of the designed molecules towards the target PI3K was evaluated. The energetics associated with static interactions revealed 1j as the most potential candidate and the dynamic investigations including RMSD, RMSF, Rg, SASA and hydrogen bonding also supported the same through relative stabilization induced through ligand interactions. Subsequently, the binding free energy of the Wortmannin and 1j complex calculated using MM-PBSA analysis. Further evaluations with PASS prediction algorithm also supported the above results. The studies reveal that there is evidence for considering appropriate pyrido fused imidazo[4,5-c]quinoline compounds as potential anti-tumor agents.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chitluri Kiran Kumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Prathima Thimma Subramanian
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai, Tamil Nadu, India
| | - Poornimaa Murali
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arnold Emerson Isaac
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Karuppasamy Ramanathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balamurali MM
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai, Tamil Nadu, India
- *Correspondence: Balamurali MM, ; Kaushik Chanda,
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- *Correspondence: Balamurali MM, ; Kaushik Chanda,
| |
Collapse
|
13
|
Kumaran S, Parthasarathy K. Rhodium-Catalyzed Annulations and Heck Coupling/Aza-Michael Addition for the Synthesis of Benzothiadiazinoisoquinoline 6,6-Dioxides and Benzothiadiazinoisoindole 5,5-Dioxides, Respectively. J Org Chem 2022; 87:11989-12000. [PMID: 36049131 DOI: 10.1021/acs.joc.2c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new and efficient protocol has been demonstrated for the synthesis of benzothiadiazinoisoquinoline 6,6-dioxides and benzothiadiazinoisoindole 5,5-dioxides in good to excellent yields. These compounds are formed through a sequential Rh(III)-catalyzed C-H cyclization of dihydrophenylbenzothiadiazine 1,1-dioxides with alkynes and oxidative Heck coupling/aza-Michael addition of dihydrophenylbenzothiadiazine 1,1-dioxides with acrylates, respectively.
Collapse
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India
| |
Collapse
|
14
|
Sihag P, Jeganmohan M. Rhodium(III)-Catalyzed Redox-Neutral [4 + 1]-Annulation of Unactivated Alkenes with Sulfoxonium Ylides. J Org Chem 2022; 87:11073-11089. [PMID: 35946405 DOI: 10.1021/acs.joc.2c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology for redox-neutral [4 + 1] annulation of unactivated alkenes with sulfoxonium ylides leads to the synthesis of a diverse library of indanone compounds. The developed annulation reaction was found to be highly versatile due to its compatibility with various unactivated alkenes functionalized with various sensitive functional groups as well as substituted sulfoxonium ylides. Further, multiple transformations such as ring-expansion, reduction, aldol condensation, and Wittig reaction were carried out with indanones. Using this way, highly useful cyclic heterocycles such as indene, dihydroisocoumarin, and 1-indanilidene were prepared in a single step. A possible reaction mechanism was supported by deuterium labeling studies, competitive studies, and kinetic isotopic studies.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
15
|
Xue Y, Gan J, Luo N, Wang C. DABCO-Promoted Cyclization of 2-Amino-4 H-chromen-4-ones with 2,6-Dibenzylidenecyclohexan-1-ones for the Synthesis of Chromeno[2,3- b]tetrahydroquinoline. J Org Chem 2022; 87:10422-10429. [PMID: 35819223 DOI: 10.1021/acs.joc.2c00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DABCO-promoted cyclization reaction of substituted 2-amino-4H-chromen-4-ones with substituted 2,6-dibenzylidenecyclohexan-1-ones was investigated under mild conditions. This reaction provided a novel and efficient access to the 7,8,9,10-tetrahydro-12H-chromeno[2,3-b]quinolin-12-ones in good yields, the exocyclic double bond of which is predominantly E-selective.
Collapse
Affiliation(s)
- Yuhang Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Jianbo Gan
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Naili Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
16
|
Pan C, Yuan C, Yu JT. Ruthenium‐Catalyzed C–H Functionalization/Annulation of N‐Aryl Indazoles/Phthalazines with Sulfoxonium Ylides to access Tetracyclic Fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology School of Petrochemical Engineering Changzhou 213164 Changzhou CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering CHINA
| |
Collapse
|
17
|
Bhorali P, Sultana S, Gogoi S. Recent Advances in Metal‐Catalyzed C−H Bond Functionalization Reactions of Sulfoxonium Ylides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pratiksha Bhorali
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sabera Sultana
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
18
|
Yadav SK, Ramesh B, Jeganmohan M. Cobalt(III)-Catalyzed Chemo- and Regioselective [4 + 2]-Annulation of Aromatic Sulfoxonium Ylides with 1,3-Diynes. J Org Chem 2022; 87:4134-4153. [PMID: 35245072 DOI: 10.1021/acs.joc.1c02967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Air-stable, highly abundant, and cost-effective Co(III)-catalyzed redox-neutral [4 + 2]-annulation of aromatic sulfoxonium ylides with 1,3-diynes providing useful substituted 1-naphthol derivatives in a regioselective manner is described. Further, the prepared 1-naphthols having internal alkyne were converted into useful polycarbocyclic molecules and spiro-dienone derivatives in good-to-excellent yields. A possible reaction mechanism involving ortho C-H activation as a key step was proposed and supported by deuterium labeling and kinetic isotope labeling studies.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
19
|
Yin C, Li L, Yu C. Rh(III)-catalyzed C-H annulation of sulfoxonium ylides with iodonium ylides towards isocoumarins. Org Biomol Chem 2022; 20:1112-1116. [PMID: 35040469 DOI: 10.1039/d1ob02273c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The direct synthesis of isocoumarin skeletons has been realized through the Rh(III)-catalyzed [3 + 3] annulation of sulfoxonium ylides with iodonium carbenes. The synthetic protocol was constructed efficiently with broad functional group tolerance and mild reaction conditions. This reaction can be formally viewed as the result of C-H activation, carbene insertion and nucleophilic addition processes. Furthermore, the further conversions of the product and gram-scale reactions were also demonstrate to support the effectiveness of the synthesis protocol.
Collapse
Affiliation(s)
- Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
20
|
Ganesh PSKP, Muthuraja P, Gopinath P. Hydrazine-Directed Rh(III) Catalyzed (4+2) Annulation with Sulfoxonium Ylides: Synthesis and Photophysical Properties of Dihydrocinnolines. Chem Commun (Camb) 2022; 58:4211-4214. [DOI: 10.1039/d1cc06353g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report hydrazine-directed, Rh(III) catalyzed (4+2) annulation of N-alkyl aryl hydrazines with sulfoxonium ylides as a safe carbene precursor. The reaction shows excellent functional group tolerance with broad substrate...
Collapse
|
21
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
22
|
Zhang J, Zhang C, Zheng Z, Zhou P, Liu W. Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Lin C, Huang W, Huang Y, Dhole S, Sun C. Rhodium‐Catalyzed [4+2] Annulation of N‐Aryl Pyrazolones with Diazo Compounds To Access Pyrazolone‐Fused Cinnolines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chih‐Yu Lin
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
| | - Wan‐Wen Huang
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
| | - Ying‐Ti Huang
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
| | - Sandip Dhole
- Amar Chemistry Pvt. Ltd. G1 A, Ackruti Corporate Park Mumbai 400078 India
| | - Chung‐Ming Sun
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hseuh Road Hsinchu 300-10, ROC Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807-08, ROC Taiwan
| |
Collapse
|
25
|
Guan M, Wu Y, Chen Y, Huang X, Xu Y, Li J, Lai R. Ru(II)-Catalyzed C–H Activation Reaction between 2-Phenylquinazolinone and Vinylene Carbonate. Synlett 2021. [DOI: 10.1055/a-1608-5381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractIn the report, we described the ruthenium(II)-catalyzed C–H activation/cyclization of 2-arylquinazolinones with vinyl carbonate for the synthesis of different fused quinazolinones. Through this strategy, the 6-hydroxy-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one and 8H-isoquino[1,2-b] quinazolin-8-one have been obtained, respectively, under different temperatures. Additionally, the reaction features broad substrate scope and good yields, only producing carbon dioxide as byproduct. Moreover, we performed preliminary mechanistic studies of this reaction and proposed a possible mechanism.
Collapse
Affiliation(s)
- Mei Guan
- West China Hospital, Sichuan University
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Yuncan Chen
- West China Hospital, Sichuan University
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Xin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| |
Collapse
|
26
|
Jiang S, Cao WB, Xu XP, Ji SJ. Cobalt-Catalyzed Isocyanide-Based Three-Component Cascade for the Synthesis of Quinazolines. Org Lett 2021; 23:6740-6744. [PMID: 34382812 DOI: 10.1021/acs.orglett.1c02316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A Co-catalyzed cyclization reaction of isocyanides, azides, and amines to access quinazoline derivatives was described. This protocol features a high atom economy, mild reaction conditions, excellent yields, and a broad substrate scope. This cascade reaction involved three or four C-N bonds and the formation of one or two rings. The quinazolin-4(H)-imines obtained are proven to be versatile intermediates for further valuable transformations. It was also found that the cobalt catalyst could be isolated from the reaction mixture and reused.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wen-Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.,Innovation Center for Chemical Science, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Shi Y, Huang T, Wang T, Chen J, Liu X, Wu Z, Huang X, Zheng Y, Yang Z, Wu Y. Divergent Construction of Diverse Scaffolds through Catalyst-Controlled C-H Activation Cascades of Quinazolinones and Cyclopropenones. Chemistry 2021; 27:13346-13351. [PMID: 34350649 DOI: 10.1002/chem.202101839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/10/2022]
Abstract
A transition-metal-catalyzed C-H activation cascade strategy to rapidly construct diverse quinazolinone derivatives in a one-pot manner is reported. The catalysts play an important role in the different transformations. Additionally, the procedure is scalable, proceeds with high efficiency and good chemo-/regio-selectivity, and tolerates a range of functional groups.
Collapse
Affiliation(s)
- Yuesen Shi
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianle Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ting Wang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jian Chen
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xuexin Liu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhouping Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaofang Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yao Zheng
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhongzhen Yang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
28
|
Naikawadi PK, Mucherla L, Dandela R, Sambari M, Kumar KS. One‐Pot Two‐Step Double Annulation of
N
‐Methoxybenzamides with Alkynes and Alkenes: Regioselective Construction of Isoindolo[2,1‐
b
]isoquinolin‐5(7
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology IOC-Odisha Campus, Samantpuri Bhubaneswar 751013 India
| | - Madhavi Sambari
- Department of Chemistry Osmania University Hyderabad 500 007 India
| | - K. Shiva Kumar
- Department of Chemistry Osmania University Hyderabad 500 007 India
| |
Collapse
|
29
|
Hu S, Han X, Xie X, Fang F, Wang Y, Saidahmatov A, Liu H, Wang J. Synthesis of Pyrazolo[1,2‐a]cinnolines
via
Rhodium(III)‐Catalyzed [4+2] Annulation Reactions of Pyrazolidinones with Sulfoxonium Ylides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shulei Hu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xiong Xie
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Feifei Fang
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Yong Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Hong Liu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| | - Jiang Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| |
Collapse
|
30
|
Yao T, Wang B, Ren B, Qin X, Li T. Palladium-catalyzed Ugi-type reaction of 2-iodoanilines with isocyanides and carboxylic acids affording N-acyl anthranilamides. Chem Commun (Camb) 2021; 57:4247-4250. [PMID: 33913976 DOI: 10.1039/d1cc01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first palladium-catalyzed Ugi-type multicomponent reaction for the synthesis of N-acyl anthranilamides from isocyanides, 2-iodoanilines and carboxylic acids has been developed. This method provides expeditious and highly efficient access to structurally diverse N-acyl anthranilamides from readily available starting materials with good functional group compatibility. The utility of this method has been demonstrated by the late stage functionalization of two commercial drugs: Flurbiprofen and Loxoprofen.
Collapse
Affiliation(s)
- Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Bo Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Beige Ren
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue RD, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
31
|
Wang L, Jiang K, Zhang N, Zhang Z. Rhodium‐Catalyzed Synthesis of Isoquinolino[1,2‐
b
]Quinazolines
via
C−H Annulation in Biomass‐Derived
γ
‐Valerolactone. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang Wang
- School of Chemical and Pharmaceutical Engineering Changzhou Vocational Institute of Engineering Gehu Road 33, Wujin District Changzhou 213164 P. R. China
| | - Kuan‐chang Jiang
- School of Petrochemical Engineering Changzhou University Gehu Road 1, Wujin District Changzhou 213164 P. R. China
| | - Nana Zhang
- School of Chemical and Pharmaceutical Engineering Changzhou Vocational Institute of Engineering Gehu Road 33, Wujin District Changzhou 213164 P. R. China
| | - Zhi‐hui Zhang
- School of Petrochemical Engineering Changzhou University Gehu Road 1, Wujin District Changzhou 213164 P. R. China
| |
Collapse
|
32
|
Kazemnejadi M, Nasseri MA, Sheikh S, Rezazadeh Z, Alavi Gol SA. Fe 3O 4@Sap/Cu(ii): an efficient magnetically recoverable green nanocatalyst for the preparation of acridine and quinazoline derivatives in aqueous media at room temperature. RSC Adv 2021; 11:15989-16003. [PMID: 35481188 PMCID: PMC9030076 DOI: 10.1039/d1ra01373d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
Saponin, as a green and available phytochemical, was immobilized on the surface of magnetite nanoparticles then doped with Cu ions (Fe3O4@Sap/Cu(ii)) and used as an efficient nanocatalyst for the synthesis of quinazoline and acridine derivatives, due to their high application and importance in various fields of science. Different spectroscopic and microscopic techniques were used for the catalyst characterization such as FT-IR, XRD, FE-SEM, EDX, TEM, TGA, VSM, BET, DLS, CV, and XPS analyses. All characterization data were correlated with each other so that the structure of the catalyst was accurately characterized. The reactions were performed in the presence of a low amount of Fe3O4@Sap/Cu(ii) (0.42 mol%) as a green catalyst in water over a short period of time. The results show well the effective role of saponin in solving the problem of mass transfer in aqueous medium, which is the challenge of many organic reactions in aqueous medium and in the presence of heterogeneous medium. High catalytic activity was found for the catalyst and high to excellent efficiency was obtained for all quinazoline (68-94% yield) and acridine (66-97% yield) derivatives in short reaction times (less than 1 hour) under mild reaction conditions in the absence of any hazardous or expensive materials. There is not any noticeable by-product found whether for acridine or quinazoline derivatives, which reflects the high selectivity. Two reasonable mechanisms were proposed for the reactions based on observations from control experiments as well as literature reports. The catalyst could be easily recovered magnetically for at least six consecutive runs with insignificant reactivity loss.
Collapse
Affiliation(s)
- Milad Kazemnejadi
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| | - Mohammad Ali Nasseri
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| | - Safoora Sheikh
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
- Institut für Organische Chemie, Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Zinat Rezazadeh
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| | - Seyyedeh Ameneh Alavi Gol
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| |
Collapse
|
33
|
Hong C, Yu S, Liu Z, Zhang Y. Rhodium(iii)-catalyzed annulation of enamides with sulfoxonium ylides toward isoquinolines. RSC Adv 2021; 11:11490-11494. [PMID: 35423634 PMCID: PMC8698508 DOI: 10.1039/d1ra01063h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
An efficient rhodium(iii)-catalyzed C-H activation followed by intermolecular annulation between enamides and sulfoxonium ylides has been developed. The transformation proceeds smoothly with a broad range of substrates, affording a series of isoquinoline derivatives in moderate to good yields under additive-free conditions.
Collapse
Affiliation(s)
- Chao Hong
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Shuling Yu
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
34
|
Umadevi N, Kumar G, Reddy NG, Reddy BS. Recent Advances in C–H Activation and Functionalization of Quinazolinones/ Quinazolines. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210180732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the transition metal-catalyzed direct C–H functionalization
of quinazolinones and quinazolines through C-C, C-N and C-O bond formations. It focuses
mainly on the C-H (sp<sup>2</sup> or sp<sup>3</sup>) bond arylation, amination, sulfamidation, acetoxylation,
halogenation, annulation of quinazolinones and quinazolines. This review illustrates the scope
of C-H activation and functionalization of various quinazolinone and quinazoline derivatives.
Collapse
Affiliation(s)
- N. Umadevi
- Indian Institute of Chemical Technology, Hyderabad, India
| | - G. Kumar
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - N.C. Gangi Reddy
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | |
Collapse
|
35
|
Malasala S, Polomoni A, Chelli SM, Kar S, Madhavi YV, Nanduri S. A microwave-assisted copper-mediated tandem approach for fused quinazoline derivatives. Org Biomol Chem 2021; 19:1854-1859. [PMID: 33565553 DOI: 10.1039/d0ob02312d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A method for the microwave-assisted copper-mediated oxidative coupling reaction of different aldehydes and quinazolines/benzimidazoles has been developed for the synthesis of fused-polycyclic systems via new C-N bond formation. The current methodology involves the use of environmentally benign NH4OAc as the amine source in the presence of 2-propanol as the solvent. This novel tandem reaction approach offers a rapid and straightforward access to complex fused quinazoline derivatives in an efficient manner.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Anusha Polomoni
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sai Manohar Chelli
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Swayamsidda Kar
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
36
|
Mixed crystalline phases and catalytic performance of OMS-2 based nanocomposites for one-pot synthesis of quinazolines with O2 as an oxidant. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Nunewar S, Kumar S, Talakola S, Nanduri S, Kanchupalli V. Co(III), Rh(III) & Ir(III)‐Catalyzed Direct C−H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chem Asian J 2021; 16:443-459. [DOI: 10.1002/asia.202001219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srilakshmi Talakola
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
38
|
Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Recent advances in Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation via carbene migratory insertion. Org Biomol Chem 2021; 19:1438-1458. [DOI: 10.1039/d0ob02309d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review highlighted diverse annulations, including nitrogen, oxygen, sulfur heterocycles and carbocylizations via Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation with various arene and carbene precursors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Saiprasad Nunewar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srilekha Oluguttula
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srinivas Nanduri
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| |
Collapse
|
39
|
Moshkina TN, Nosova EV, Lipunova GN, Zhilina EF, Slepukhin PA, Nikonov IL, Charushin VN. The Rh( iii)-catalysed C–H/N–H annulation of 2-thienyl- and 2-phenyl-quinazolin-4(3 H)-ones with diphenylacetylene. NEW J CHEM 2021. [DOI: 10.1039/d1nj00935d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Thienyl/phenyl substituted quinazolin-4(3H)-ones were converted into 4,5-diphenyl-7H-thieno[2′,3′:3,4]pyrido[2,1-b]quinazolin-7-ones or amide alcoholysis product via Rh(iii)-catalyzed reaction of with diphenylacetylene.
Collapse
Affiliation(s)
- Tatyana N. Moshkina
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
| | - Emiliya V. Nosova
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Galina N. Lipunova
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis
- Ural Division of the Russian Academy of Sciences
- Yekaterinburg
- Russia
| | - Pavel A. Slepukhin
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Igor L. Nikonov
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Valery N. Charushin
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| |
Collapse
|
40
|
Jin HS, Du YZ, Zhao QY, Zhao LM. Ru( ii)-Catalyzed C–H activation/annulation reactions of N-aryl-pyrazolidinones with sulfoxonium ylides: synthesis of cinnoline-fused pyrazolidinones. Org Chem Front 2021. [DOI: 10.1039/d1qo01001h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first Ru(ii)-catalyzed cascade C–H activation/annulation reactions of N-aryl-pyrazolidinones with sulfoxonium ylides are reported.
Collapse
Affiliation(s)
- Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Ya-Zhen Du
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qing-Yang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
41
|
Su K, Guo X, Zhu L, Liu Y, Lu Y, Chen B. Indolizine synthesis via radical cyclization and demethylation of sulfoxonium ylides and 2-(pyridin-2-yl)acetate derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel radical cross-coupling/cyclization of 2-(pyridin-2-yl)acetate derivatives and sulfoxonium ylides is developed, which provides a straightforward access to structurally diverse methylthio-substituted indolizine.
Collapse
Affiliation(s)
- Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Liangwei Zhu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Yixuan Lu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
42
|
Li X, Zhang R, Qi Y, Zhao Q, Yao T. Rhodium( iii)-catalyzed C–H activation/annulation of N-iminopyridinium ylides with alkynes and diazo compounds. Org Chem Front 2021. [DOI: 10.1039/d0qo01333a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rh(iii)-Catalyzed C–H activation/annulation of N-iminopyridinium ylides with alkynes and diazo compounds has been realized for the synthesis of isoquinolones and isocoumarins.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Ruihong Zhang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Yaoting Qi
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Qing Zhao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|
43
|
Chen J, Zhong T, Zheng X, Yin C, Zhang L, Zhou J, Jiang X, Yu C. Selective Synthesis of Fused Tricyclic [1,3]oxazino[3,4‐
a
]indolone and Dihydropyrimido [1,6‐a]indolone
via
Rh(III)‐catalyzed [3+3] or [4+2] C−H Annulation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junyu Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lei Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jian Zhou
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
44
|
Lyu X, Huang S, Huang Y, Song H, Liu Y, Li Y, Yang S, Wang Q. Rhodium(III)‐Catalyzed Cross‐Coupling of Sulfoxonium Ylides with Quinoline‐8‐carboxaldehydes for Synthesis of Quinoline‐1,3‐diketones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xue‐Li Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shi‐Sheng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yuan‐Qiong Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Hong‐Jian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yu‐Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yong‐Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shao‐Xiang Yang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 P. R. China
| | - Qing‐Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
45
|
Chen M, Lou M, Deng Z, Yang Q, Peng Y. Rhodium(III)‐Catalyzed Alkylation of 2‐Arylquinazolin‐4(3H)‐ones with Cyclopropanols by Directing C‐H Activation and Ring Opening at Ambient Temperature. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mu‐Wang Chen
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Minhao Lou
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Zhihong Deng
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Qin Yang
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| |
Collapse
|
46
|
He M, Chen Y, Luo Y, Li J, Lai R, Yang Z, Wang Y, Wu Y. Transition-metal-free [3+3] annulation reaction of sulfoxonium ylides with cyclopropenones for the synthesis of 2-pyrones. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
47
|
Zhou P, Yang W, Li G, Hao W, Jiang B. Rh(III)‐Catalyzed [4+1] Cyclization of Sulfoxonium Ylides and Anthranils for Accessing
N
‐Arylisatins. ChemCatChem 2020. [DOI: 10.1002/cctc.202000640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Zhou
- Institute of Chemistry and BioMedical Sciences and School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 P. R. China
| | - Wei‐Tao Yang
- Institute of Chemistry and BioMedical Sciences and School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 P. R. China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences and School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 P. R. China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409-1061 USA
| | - Wen‐Juan Hao
- School of Chemistry & Materials Science Jiangsu Normal University Jiangsu 221116 P. R. China) tjchemgroup.jsnu.edu.cn
| | - Bo Jiang
- School of Chemistry & Materials Science Jiangsu Normal University Jiangsu 221116 P. R. China) tjchemgroup.jsnu.edu.cn
| |
Collapse
|
48
|
Zhang M, Zhang J, Teng Z, Chen J, Xia Y. Ruthenium(II)-Catalyzed Homocoupling of α-Carbonyl Sulfoxonium Ylides Under Mild Conditions: Methodology Development and Mechanistic DFT Study. Front Chem 2020; 8:648. [PMID: 33195001 PMCID: PMC7525066 DOI: 10.3389/fchem.2020.00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
A mild ruthenium(II)-catalyzed homocoupling of α-carbonyl sulfoxonium ylides was developed and the detailed mechanism was understood based on DFT calculations in the current report. The catalytic system utilizes the α-carbonyl sulfoxonium ylide as both the directing group for ortho-sp2 C-H activation and the acylmethylating reagent for C-C coupling. Various substituents are compatible in the transformation and a variety of isocoumarin derivatives were synthesized at room temperature without any protection. The theoretical results disclosed that the full catalytic cycle contains eight elementary steps, and in all the cationic Ru(II) monomer is involved as the catalytic active species. The acid additive is responsible for protonation of the ylide carbon prior to the intramolecular nucleophilic addition and C-C bond cleavage. Interestingly, the intermediacy of free acylmethylation intermediate or its enol isomer is not necessary for the transformation.
Collapse
Affiliation(s)
- Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Jinrong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhenfang Teng
- Information Technology Center, Wenzhou University, Wenzhou, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
49
|
Chen X, Xia F, Zhao Y, Ma J, Ma Y, Zhang D, Yang L, Sun P. TBHP‐Mediated
Oxidative Decarboxylative Cyclization in Water: Direct and Sustainable Access to Anti‐malarial Polycyclic Fused Quinazolinones and Rutaecarpine. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingyu Chen
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Fei Xia
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yifan Zhao
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ji Ma
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yue Ma
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Dong Zhang
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Lan Yang
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Peng Sun
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
50
|
Chen X, Zhang X, Lu S, Sun P. Electrosynthesis of polycyclic quinazolinones and rutaecarpine from isatoic anhydrides and cyclic amines. RSC Adv 2020; 10:44382-44386. [PMID: 35517151 PMCID: PMC9058480 DOI: 10.1039/d0ra09382c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
A direct decarboxylative cyclization between readily available isatoic anhydrides and cyclic amines was established to construct polycyclic fused quinazolinones employing electrochemical methods. This procedure was performed in an undivided cell without the use of a transition-metal-catalyst and external oxidant. A broad scope of polycyclic fused quinazolinones were obtained in moderate to good yields. Additionally, rutaecarpine was also prepared through our method in one step in good yield. Polycyclic quinazolinones and rutaecarpine were synthesized from isatoic anhydrides and cyclic amines through an electrochemical method without an external oxidant and transition-metal-catalyst.![]()
Collapse
Affiliation(s)
- Xingyu Chen
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Xing Zhang
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Sixian Lu
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Peng Sun
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| |
Collapse
|