1
|
Mishra S, Baghel AS, Kumar A. Cp*Co(III)-catalyzed synthesis of isoquinolones via controlled annulation of primary arylamides with internal alkynes. Org Biomol Chem 2025; 23:427-439. [PMID: 39575981 DOI: 10.1039/d4ob01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In this study, we present the first cobalt(III)-catalyzed direct synthesis of isoquinolones from readily available primary arylamides and internal alkynes through a controlled oxidative C-H/N-H annulation reaction. This innovative protocol eliminates the need for expensive transition metal salts and external auxiliaries, producing the desired mono-annulated product exclusively while accommodating a wide range of substrates. Preliminary mechanistic studies highlight the critical role of copper oxide in facilitating the transformation. Additionally, peripheral modifications of the core isoquinolone rings have been performed to synthesize complex heterocyclic systems.
Collapse
Affiliation(s)
- Saksham Mishra
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| | - Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| |
Collapse
|
2
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
3
|
Bora J, Dutta M, Chetia B. Cobalt catalyzed alkenylation/annulation reactions of alkynes via C–H activation: A review. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Advances in Catalytic C–F Bond Activation and Transformation of Aromatic Fluorides. Catalysts 2022. [DOI: 10.3390/catal12121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The activation and transformation of C–F bonds in fluoro-aromatics is a highly desirable process in organic chemistry. It provides synthetic methods/protocols for the generation of organic compounds possessing single or multiple C–F bonds, and effective catalytic systems for further study of the activation mode of inert chemical bonds. Due to the high polarity of the C–F bond and it having the highest bond energy in organics, C–F activation often faces considerable academic challenges. In this mini-review, the important research achievements in the activation and transformation of aromatic C–F bond, catalyzed by transition metal and metal-free systems, are presented.
Collapse
|
5
|
Guo Y, Huang PF, Xiong BQ, Fan JH, Liu Y. Cu-catalyzed oxidative denitrogenation of 3-aminoindazoles for the synthesis of isoquinolinones. Org Biomol Chem 2022; 20:6844-6853. [PMID: 35968914 DOI: 10.1039/d2ob01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed oxidative dual arylation of active alkenes via the cleavage of two C-N bonds of 3-aminoindazoles is presented for constructing isoquinolinones. Importantly, 3-aminoindazoles are used as efficient arylating agents through a radical process. This method has a good substrate scope and functional group compatibility.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
6
|
Wang S, Yao L, Wang JS, Ying J, Wu XF. Cobalt-catalyzed C-H annulation of N-aroylpicolinamides with alkynes for (NH)-isoquinolones synthesis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Cheng XF, Yu T, Liu Y, Wang N, Chen Z, Zhang GL, Tong L, Tang B. Palladium(II)-Catalyzed C(sp 2)–H Bond Activation/C–N Bond Cleavage Annulation of N-Methoxy Amides and Arynes. Org Lett 2022; 24:2087-2092. [DOI: 10.1021/acs.orglett.2c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiu-Fen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Ting Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Nan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Guang-Lu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
8
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
9
|
Cizikovs A, Lukasevics L, Grigorjeva L. Cobalt-catalyzed C–H bond functionalization using traceless directing group. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Yang D, Huang H, Zhang H, Yin LM, Song MP, Niu JL. Regioselective Intermolecular Hydroamination of Unactivated Alkenes: “Co–H” Enabled Remote Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dandan Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - He Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Li-Ming Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Abstract
Sustainable transformations towards the production of valuable chemicals constantly attract interest, both in terms of academic and applied research. C–H activation has long been scrutinized in this regard, given that it offers a straightforward pathway to prepare compounds of great significance. In this context, directing groups (DG) have paved the way for chemical transformations that had not been achievable using traditional reactions. Few steps, high yields, selectivity and activation of inert substrates are some of the invaluable assets of directed catalysis. Additionally, the employment of traceless directing groups (TDG) greatly improves and simplifies this strategy, enabling the realization of multi-step reactions in one-pot, cascade procedures. Cheap, abundant, readily available transition metal salts and complexes can catalyze a plethora of reactions employing TDGs, usually under low catalyst loadings—rarely under stoichiometric amounts, leading in greater atom economy and milder conditions with increased yields and step-economy. This review article summarizes all the work done on TDG-assisted catalysis with manganese, iron, cobalt, nickel, or copper catalysts, and discusses the structure-activity relationships observed, by presenting the catalytic pathways and range of transformations reported thus far.
Collapse
|
12
|
Vorobyeva DV, Petropavlovskikh DA, Godovikov IA, Nefedov SE, Osipov SN. Rh(III)‐Catalyzed C−H Activation/Annulation of Aryl Hydroxamates with CF
3
‐Containing
α
‐Propargyl
α
‐Amino Acid Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daria V. Vorobyeva
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Dmitry A. Petropavlovskikh
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Ivan A. Godovikov
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Sergey E. Nefedov
- Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky pr. 31 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Str. 6 117198 Moscow Russian Federation
| |
Collapse
|
13
|
Xing YK, Chen XR, Yang QL, Zhang SQ, Guo HM, Hong X, Mei TS. Divergent rhodium-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes. Nat Commun 2021; 12:930. [PMID: 33568643 PMCID: PMC7876044 DOI: 10.1038/s41467-021-21190-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
α-Pyridones and α-pyrones are ubiquitous structural motifs found in natural products and biologically active small molecules. Here, we report an Rh-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes, affording cyclic products in good to excellent yield. Divergent syntheses of α-pyridones and cyclic imidates are accomplished by employing N-phenyl acrylamides and N-tosyl acrylamides as substrates, respectively. Additionally, excellent regioselectivities are achieved when using unsymmetrical alkynes. This electrochemical process is environmentally benign compared to traditional transition metal-catalyzed C-H annulations because it avoids the use of stoichiometric metal oxidants. DFT calculations elucidated the reaction mechanism and origins of substituent-controlled chemoselectivity. The sequential C-H activation and alkyne insertion under rhodium catalysis leads to the seven-membered ring vinyl-rhodium intermediate. This intermediate undergoes either the classic neutral concerted reductive elimination to produce α-pyridones, or the ionic stepwise pathway to produce cyclic imidates.
Collapse
Affiliation(s)
- Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
14
|
Li MH, Si XJ, Zhang H, Yang D, Niu JL, Song MP. Directed Cobalt-Catalyzed C-H Activation to Form C-C and C-O Bonds in One Pot via Three-Component Coupling. Org Lett 2021; 23:914-919. [PMID: 33475370 DOI: 10.1021/acs.orglett.0c04122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we disclose an efficient cobalt-catalyzed three-component coupling of benzamides, diazo compounds, and tert-butyl hydroperoxide, which provides an efficient approach to construct C(sp2)-C(sp3) and C-O bonds in one-pot accompanied with C-H activation. This protocol features low catalyst loading (4 mol %), the avoidance of additives, and excellent functional group compatibility, providing three-component coupling adducts with high yields under mild conditions (up to 88%). Mechanism studies show that the reaction may involve a radical process.
Collapse
Affiliation(s)
- Meng-Hui Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Pounder A, Ho A, Macleod M, Tam W. Chemistry of Unsymmetrical C1-Substituted Oxabenzonorbornadienes. Curr Org Synth 2021; 18:446-474. [PMID: 33402089 DOI: 10.2174/1570179417666210105121115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate, which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers, which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Angel Ho
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Matthew Macleod
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
16
|
Liang Y, Si X, Zhang H, Yang D, Niu J, Song M. Thiocarbamate‐directed Cp*Co(III)‐Catalyzed Olefinic C−H Amidation: Facile Access to Enamines with High (
Z
)‐Selectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya‐Ru Liang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Xiao‐Ju Si
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - He Zhang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Dandan Yang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Jun‐Long Niu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Mao‐Ping Song
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
17
|
Abel-Snape X, Whyte A, Lautens M. Synthesis of Aminated Phenanthridinones via Palladium/Norbornene Catalysis. Org Lett 2020; 22:7920-7925. [DOI: 10.1021/acs.orglett.0c02850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xavier Abel-Snape
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| |
Collapse
|
18
|
Rani G, Luxami V, Paul K. Traceless directing groups: a novel strategy in regiodivergent C-H functionalization. Chem Commun (Camb) 2020; 56:12479-12521. [PMID: 32985634 DOI: 10.1039/d0cc04863a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of functional groups as internal ligands for assisting C-H functionalization, termed the chelation assisted strategy, is emerging as one of the most powerful tools for construction of C-C and C-X bonds from inert C-H bonds. However, there are various directing groups which cannot be either removed after functionalization or require some additional steps or reagents for their removal, thereby limiting the scope of structural diversity of the products, and the step and atom economy of the system. These limitations are overcome by the use of the traceless directing group (TDG) strategy wherein functionalization of the substrate and removal of the directing group can be carried out in a one pot fashion. Traceless directing groups serve as the most ideal chelation assisted strategy with a high degree of reactivity and selectivity without any requirement for additional steps for their removal. The present review overviews the use of various functional groups such as carboxylic acids, aldehydes, N-oxides, nitrones, N-nitroso amines, amides, sulfoxonium ylides and silicon tethered directing groups for assisting transition metal catalyzed C-H functionalization reactions in the last decade.
Collapse
Affiliation(s)
- Geetika Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | | | | |
Collapse
|
19
|
Dey A, Volla CMR. Traceless Bidentate Directing Group Assisted Cobalt-Catalyzed sp2-C–H Activation and [4 + 2]-Annulation Reaction with 1,3-Diynes. Org Lett 2020; 22:7480-7485. [DOI: 10.1021/acs.orglett.0c02664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
21
|
Isoquinolone Synthesis via Zn(OTf)2-Catalyzed Aerobic Cyclocondensation of 2-(1-Alkynyl)-benzaldehydes with Arylamines. Catalysts 2020. [DOI: 10.3390/catal10060683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A zinc(II) triflate-catalyzed cyclocondensation of ortho-alkynylbenzaldehydes with arylamines in the presence of base under an oxygen atmosphere affording isoquinolones in good to high yields has been developed. The advantages of the present catalyst system include the use of an air-stable and cheap commercially available Lewis acid as the catalyst, high atom utilization and easily available starting materials.
Collapse
|
22
|
Yang D, Huang H, Li MH, Si XJ, Zhang H, Niu JL, Song MP. Directed Cobalt-Catalyzed anti-Markovnikov Hydroalkylation of Unactivated Alkenes Enabled by “Co–H” Catalysis. Org Lett 2020; 22:4333-4338. [DOI: 10.1021/acs.orglett.0c01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Meng-Hui Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|