1
|
Pohorilets I, Beard JP, Driscoll JL, Schmitz JC, Koide K. Synthesis and antiproliferative activity of a tetrahydrofuran analog of FR901464. Bioorg Med Chem Lett 2024; 104:129739. [PMID: 38599298 PMCID: PMC11154589 DOI: 10.1016/j.bmcl.2024.129739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
FR901464 is a natural product that exhibits antiproliferative activity at single-digit nanomolar concentrations in cancer cells. Its tetrahydropyran-spiroepoxide covalently binds the spliceosome. Through our medicinal chemistry campaign, we serendipitously discovered that a bromoetherification formed a tetrahydrofuran. The tetrahydrofuran analog was three orders of magnitude less potent than the corresponding tetrahydropyran analogs. This study shows the significance of the tetrahydropyran ring that presents the epoxide toward the spliceosome.
Collapse
Affiliation(s)
- Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Jacob P Beard
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Julia L Driscoll
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - John C Schmitz
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine 5150 Centre Avenue, Pittsburgh, PA 15232, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center 5117 Centre Ave, Pittsburgh, PA 15232, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center 5117 Centre Ave, Pittsburgh, PA 15232, United States.
| |
Collapse
|
2
|
Beard J, Bressin RK, Markaj PL, Schmitz JC, Koide K. Synthesis and Conformational Analysis of FR901464-Based RNA Splicing Modulators and Their Synergism in Drug-Resistant Cancers. J Med Chem 2023; 66:14497-14512. [PMID: 37870431 PMCID: PMC10641826 DOI: 10.1021/acs.jmedchem.3c00733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/24/2023]
Abstract
FR901464 is a cytotoxic natural product that binds splicing factor 3B subunit 1 (SF3B1) and PHD finger protein 5A (PHF5A), the components of the human spliceosome. The amide-containing tetrahydropyran ring binds SF3B1, and it remains unclear how the substituents on the ring contribute to the binding. Here, we synthesized meayamycin D, an analogue of FR901464, and three additional analogues to probe the conformation through methyl scanning. We discovered that the amide-containing tetrahydropyran ring assumes only one of the two possible chair conformations and that methylation of the nitrogen distorts the chair form, dramatically reducing cytotoxicity. Meayamycin D induced alternative splicing of MCL-1, showed strong synergism with venetoclax in drug-resistant lung cancer cells, and was cancer-specific over normal cells. Meayamycin D incorporates an alkyl ether and shows a long half-life in mouse plasma. The characteristics of meayamycin D may provide an approach to designing other bioactive L-shaped molecules.
Collapse
Affiliation(s)
- Jacob
P. Beard
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Robert K. Bressin
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Paulo L. Markaj
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - John C. Schmitz
- Division
of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
- Cancer
Therapeutics Program, UPMC Hillman Cancer
Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
| | - Kazunori Koide
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Mushtaq A, Zahoor AF. Mukaiyama aldol reaction: an effective asymmetric approach to access chiral natural products and their derivatives/analogues. RSC Adv 2023; 13:32975-33027. [PMID: 38025859 PMCID: PMC10631541 DOI: 10.1039/d3ra05058k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The Mukaiyama aldol reaction is generally a Lewis-acid catalyzed cross-aldol reaction between an aldehyde or ketone and silyl enol ether. It was first described by Mukaiyama in 1973, almost 5 decades ago, to achieve the enantioselective synthesis of β-hydroxy carbonyl compounds in high percentage yields. Mukaiyama aldol adducts play a pivotal role in the synthesis of various naturally occurring and medicinally important organic compounds such as polyketides, alkaloids, macrolides, etc. This review highlights the significance of the Mukaiyama aldol reaction towards the asymmetric synthesis of a wide range of biologically active natural products reported recently (since 2020).
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| |
Collapse
|
4
|
Alcock E, Mackey P, Turlik A, Bhatt K, Light ME, Houk KN, McGlacken GP. The Aldol-Tishchenko Reaction of Butanone, Cyclobutanone and a 3-Pentanone Derived Sulfinylimine and DFT Calculations of the Stereo-determining Step. Chemistry 2023; 29:e202203029. [PMID: 36617506 DOI: 10.1002/chem.202203029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
Herein, we present a highly diastereoselective method to furnish acyclic 3-amino-1,5-diol derivatives using a tandem double-aldol-Tishchenko protocol (dr up to >99 : 1) using a butanone derived sulfinylimine. In most cases only 1 diastereomer predominates, from a possible 16. The reaction is also regioselective. In addition, the highly challenging cyclobutanone and 3-pentanone derivatives are also amenable to a double-aldol-Tishchenko reaction, although the dr values are modest. Despite that, clean single diastereomers can be isolated, which should prove very useful in medicinal chemistry and other areas. Detailed DFT calculations support the observed stereoselectivities in all cases, providing a rationale for the excellent dr values in the butanone series and the moderate values for the 3-pentanone class.
Collapse
Affiliation(s)
- Emma Alcock
- School of Chemistry and Analytical and Biological Research Facility, University College Cork, T12 YN60, Cork, Ireland
| | - Pamela Mackey
- School of Chemistry and Analytical and Biological Research Facility, University College Cork, T12 YN60, Cork, Ireland
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1596, USA
| | - Khushi Bhatt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1596, USA
| | - Mark E Light
- University of Southampton, Chemistry Department University Road, Southampton, SO17 1BJ, UK
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1596, USA
| | - Gerard P McGlacken
- School of Chemistry and Analytical and Biological Research Facility, University College Cork, T12 YN60, Cork, Ireland
| |
Collapse
|
5
|
Beard JP, Emerson JD, Jacobs AS, O'Grady AJ, Burrows J, Koide K. Improved Synthesis of the Amine Fragment of FR901464 and Thailanstatins through the Development of a Convenient N-Detosylation Method. J Org Chem 2022; 87:13416-13421. [PMID: 36153989 DOI: 10.1021/acs.joc.2c01889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FR901464 and thailanstatins are potent cytotoxic natural products that share an amine-containing tetrahydropyran ring. We previously reported the synthesis of the tetrahydropyran component. Here, we changed the protecting group for the amine from Boc to tosyl, improving yields and the time economy. A highlight of the revised synthetic scheme is the use of lithium, t-butanol, and ethylenediamine in THF (nontraditional Birch reduction conditions) for the N-detosylation.
Collapse
Affiliation(s)
- Jacob P Beard
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Joseph D Emerson
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander S Jacobs
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Andrew J O'Grady
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - James Burrows
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Bowen JI, Wang L, Crump MP, Willis CL. Synthetic and biosynthetic methods for selective cyclisations of 4,5-epoxy alcohols to tetrahydropyrans. Org Biomol Chem 2022; 20:1150-1175. [PMID: 35029626 PMCID: PMC8827043 DOI: 10.1039/d1ob01905h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Tetrahydropyrans (THPs) are common structural motifs found in natural products and synthetic therapeutic molecules. In Nature these 6-membered oxygen heterocycles are often assembled via intramolecular reactions involving either oxy-Michael additions or ring opening of epoxy-alcohols. Indeed, the polyether natural products have been particularly widely studied due to their fascinating structures and important biological properties; these are commonly formed via endo-selective epoxide-opening cascades. In this review we outline synthetic approaches for endo-selective intramolecular epoxide ring opening (IERO) of 4,5-epoxy-alcohols and their applications in natural product synthesis. In addition, the biosynthesis of THP-containing natural products which utilise IERO reactions are reviewed.
Collapse
Affiliation(s)
- James I Bowen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Luoyi Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
7
|
Bowen JI, Wang L, Crump MP, Willis CL. Ambruticins: tetrahydropyran ring formation and total synthesis. Org Biomol Chem 2021; 19:6210-6215. [PMID: 34190301 DOI: 10.1039/d1ob00883h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ambruticins are a family of polyketide natural products which exhibit potent antifungal activity. Gene knockout experiments are in accord with the proposal that the tetrahydropyran ring of the ambruticins is formed via the AmbJ catalysed epoxidation of the unsaturated 3,5-dihydroxy acid, ambruticin J, followed by regioselective cyclisation to ambruticin F. Herein, a convergent approach to the total synthesis of ambruticin J is described as well as model studies involving epoxidation and cyclisations of unsaturated hydroxy esters to give tetrahydropyrans and tetrahydrofurans. The total synthesis involves preparation of three key fragments which were united via a Suzuki-Miyaura cross-coupling and Julia-Kocienski olefination to generate the required carbon framework. Global deprotection to a triol and selective oxidation of the primary alcohol gave, after hydrolysis of the lactone, ambruticin J.
Collapse
Affiliation(s)
- James I Bowen
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Luoyi Wang
- Institute of Microbiology, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | | |
Collapse
|
8
|
Ghosh AK, Mishevich JL, Jurica MS. Spliceostatins and Derivatives: Chemical Syntheses and Biological Properties of Potent Splicing Inhibitors. JOURNAL OF NATURAL PRODUCTS 2021; 84:1681-1706. [PMID: 33974423 PMCID: PMC8919379 DOI: 10.1021/acs.jnatprod.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Spliceostatins and thailanstatins are intriguing natural products due to their structural features as well as their biological significance. This family of natural products has been the subject of immense synthetic interest because they exhibit very potent cytotoxicity in representative human cancer cell lines. The cytotoxic properties of these natural products are related to their ability to inhibit spliceosomes. FR901564 and spliceostatins have been shown to inhibit spliceosomes by binding to their SF3B component. Structurally, these natural products contain two highly functionalized tetrahydropyran rings with multiple stereogenic centers joined by a diene moiety and an acyclic side chain linked with an amide bond. Total syntheses of this family of natural products led to the development of useful synthetic strategies, which enabled the synthesis of potent derivatives. The spliceosome modulating properties of spliceostatins and synthetic derivatives opened the door for understanding the underlying spliceosome mechanism as well as the development of new therapies based upon small-molecule splicing modulators. This review outlines the total synthesis of spliceostatins, synthetic studies of structural derivatives, and their bioactivity.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jennifer L Mishevich
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Melissa S Jurica
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
9
|
Gartshore C, Tadano S, Chanda PB, Sarkar A, Chowdari NS, Gangwar S, Zhang Q, Vite GD, Momirov J, Boger DL. Total Synthesis of Meayamycin and O-Acyl Analogues. Org Lett 2020; 22:8714-8719. [PMID: 33074680 DOI: 10.1021/acs.orglett.0c03308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A short, scalable total synthesis of meayamycin is described by an approach that entails a longest linear sequence of 12 steps (22 steps overall) from commercially available chiral pool materials (ethyl l-lactate, BocNH-Thr-OH, and d-ribose) and introduces the most straightforward preparation of the right-hand subunit detailed to date. The use of the approach in the divergent synthesis of a representative series of O-acyl analogues is exemplified.
Collapse
Affiliation(s)
- Christopher Gartshore
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shinji Tadano
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Prem B Chanda
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Anindya Sarkar
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Naidu S Chowdari
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sanjeev Gangwar
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Qian Zhang
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Gregory D Vite
- Bristol Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States.,Bristol Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543 United States
| | - Jelena Momirov
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|