1
|
Qiu F, Zhang X, Wang W, Su K, Yuan D. Phenol[4]arenes: Excellent Macrocyclic Precursors for Constructing Chiral Porous Organic Cages. J Am Chem Soc 2025. [PMID: 40025876 DOI: 10.1021/jacs.4c16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The development of new chiral building blocks for constructing complex chiral architectures, such as macrocycles and cages, is both crucial and challenging. Although concave-shaped calixarenes have been established as versatile building blocks for the synthesis of cage compounds, there are no reports on cages constructed from chiral calix[4]arene derivatives. Herein, we present a straightforward and effective method for gram-scale synthesis of a new member of chiral calix[4]arene macrocycle enantiomers, namely, phenol[4]arene (PC[4]A). As a proof of concept, we functionalized these enantiomers into tetraformylphenol[4]arene (PC[4]ACHO) derivatives via the Duff reaction to construct chiral porous organic cages (CPOCs) using polyamine synthons. Specifically, we employ two fluorescent amine synthons, bis(4-aminophenyl)phenylamine and tris(4-aminophenyl)amine, to assemble with PC[4]ACHO enantiomers, resulting in [2 + 4] lantern-shaped and [6 + 8] truncated octahedral CPOCs, respectively. These structures have been unambiguously characterized by single-crystal X-ray diffraction and circular dichroism (CD) spectroscopy. Notably, the [6 + 8] truncated CPOCs exhibit internal diameters of approximately 3.1 nm, a cavity volume of around 5300 Å3, and high specific surface areas of up to 1300 m2 g-1 after desolvation, making them among the largest CPOCs reported. Additionally, investigations into their chiral sensing performance demonstrate that these PC[4]A-based CPOCs enable the enantioselective recognition of amino acids and their derivatives. This work strongly suggests that PC[4]A can serve as an excellent building block for the rational design of chiral materials with practical applications.
Collapse
Affiliation(s)
- Fenglei Qiu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xinting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wagner P, Rominger F, Gross JH, Mastalerz M. Solvent-Controlled Quadruple Catenation of Giant Chiral [8+12] Salicylimine Cubes Driven by Weak Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202217251. [PMID: 36695113 DOI: 10.1002/anie.202217251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mechanically interlocked structures are fascinating synthetic targets and the topological complexity achieved through catenation offers numerous possibilities for the construction of new molecules with exciting properties. In the structural space of catenated organic cage molecules, only few examples have been realized so far, and control over the catenation process in solution is still barely achieved. Herein, we describe the formation of a quadruply interlocked catenane of giant chiral [8+12] salicylimine cubes. The formation could be controlled by the choice of solvent used in the reaction. The interlocked structure was unambiguously characterized by single crystal X-ray diffraction and weak hydrogen bonding was identified as a central driving force for the catenation. Furthermore, scrambling experiments using partially deuterated cages were performed, revealing that the catenane formation occurs through mechanical interlocking of preformed single cages.
Collapse
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Zhang K, Hope PA, El Bitar Nehme M, Linden A, Spingler B, Rickhaus M. Azatriseptanes: Strained Framework Analogs of [7,7,7]Circulenes. Chemistry 2023; 29:e202203954. [PMID: 36542683 DOI: 10.1002/chem.202203954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The synthesis and characterization of heptagon-embedded polycyclic aromatic compounds are essential for understanding the effect of negative curvature on carbon allotropes such as fullerenes and graphenes that have applications in functional organic materials. However, owing to the synthetic difficulties in functionalizing and embedding seven-membered rings, these strain-challenged structures are relatively unexplored. We report here the synthesis, characterization, and properties of a triarylamine core bridged with ethano chains at the 2,2'-positions. In doing so, we provide access to the first heterocycle containing three fused heptagon rings with a nitrogen at its core (BATA-NHAc). X-ray crystallographic analysis and DFT calculations revealed a remarkably strained structure wherein two of the bridged aryl units approach coplanarity, while the third ring is twisted out of plane at 70°. UV-vis and emission spectroscopies identify red-shifted absorption and concentration-dependent emission profiles, respectively, as a result of the unique conformation and self-assembly properties of BATA-NHAc. Furthermore, cyclic voltammetry shows a decrease in the oxidation potential for BATA-NHAc in comparison to the non-bridged analog. This study opens new avenues in understanding the structure-property relationships of curved π-aromatics and the construction of π-frameworks of increasing complexity.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Philip A Hope
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mélissa El Bitar Nehme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
4
|
Hung TY, Kuck D, Chow HF. Donor-Acceptor Tribenzotriquinacene-Based Molecular Wizard Hats Bearing Three ortho-Benzoquinone Units. Chemistry 2022; 29:e202203749. [PMID: 36585931 DOI: 10.1002/chem.202203749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Two π-extended bay-bridged tribenzotriquinacenes ("TBTQ wizard hats") 12 and 16 bearing three mutually conjugated, alternating veratrole-type and ortho-benzoquinone units were synthesized. The electronic properties of these complementarily arranged, nonplanar push-pull systems are affected by the fusion with the rigid, C3 -symmetric TBTQ core to a different extent, as revealed by X-ray structural analysis, UV-vis spectroscopy and cyclovoltammetry. The combination of three quinone units within the original TBTQ core and three veratrole-type bay bridging units in 12 gives rise to a more efficiently π-conjugated chromophore, as reflected by the shallower shape of wizard hat and its absorption in the visible up to 750 nm in comparison to 16. Congener 12 contains an aromatic 18-π electron system in contrast to the cross-conjugated analog 16. X-ray structure analysis of the precursor dodecaether 15 revealed the formation of a cage-like supramolecular dimer, in which the peripheral dioxane-type ether groups interlace by twelve noncovalent C-H⋅⋅⋅⋅⋅O bonds.
Collapse
Affiliation(s)
- Tsz-Yu Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hak-Fun Chow
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Seifert M, Barth D, Kuck D. Benzoannellated Fenestranes Bearing
para
‐Terphenyl Units. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Seifert
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dieter Barth
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dietmar Kuck
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| |
Collapse
|
6
|
Baydoun O, Buffeteau T, Brotin T. Enantiopure cryptophane derivatives: Synthesis and chiroptical properties. Chirality 2021; 33:562-596. [PMID: 34464474 DOI: 10.1002/chir.23347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/30/2023]
Abstract
This review addresses the synthesis of enantiopure cryptophane and the study of their chiroptical properties. Cryptophane derivatives represent an important class of macrocyclic compounds that can bind a large range of species in solution under different conditions. The overwhelming majority of these host molecules is chiral, and their chiroptical properties have been thoroughly investigated. The first part of this review is dedicated to the optical resolution and the synthesis of enantiopure cryptophane derivatives. In a second part, the study of the chiroptical properties of these molecular hosts by different techniques such as electronic and vibrational circular dichroism and Raman optical activity is detailed. These techniques allow the determination of the absolute configuration of cryptophane derivatives and provide useful information about their conformation in different conditions.
Collapse
Affiliation(s)
- Orsola Baydoun
- Laboratoire de Chimie, Ens de Lyon, CNRS UMR 5182, Lyon, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires, CNRS UMR 5255, Bordeaux University, Talence, France
| | - Thierry Brotin
- Laboratoire de Chimie, Ens de Lyon, CNRS UMR 5182, Lyon, France
| |
Collapse
|
7
|
Wagner P, Rominger F, Zhang W, Gross JH, Elbert SM, Schröder RR, Mastalerz M. Chiral Self-sorting of Giant Cubic [8+12] Salicylimine Cage Compounds. Angew Chem Int Ed Engl 2021; 60:8896-8904. [PMID: 33476442 PMCID: PMC8048989 DOI: 10.1002/anie.202016592] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Chiral self-sorting is intricately connected to the complicated chiral processes observed in nature and no artificial systems of comparably complexity have been generated by chemists. However, only a few examples of purely organic molecules have been reported so far, where the self-sorting process could be controlled. Herein, we describe the chiral self-sorting of large cubic [8+12] salicylimine cage compounds based on a chiral TBTQ precursor. Out of 23 possible cage isomers only the enantiopure and a meso cage were observed to be formed, which have been unambiguously characterized by single crystal X-ray diffraction. Furthermore, by careful choice of solvent the formation of meso cage could be controlled. With internal diameters of din =3.3-3.5 nm these cages are among the largest organic cage compounds characterized and show very high specific surface areas up to approx. 1500 m2 g-1 after desolvation.
Collapse
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Wen‐Shan Zhang
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Jürgen H. Gross
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Rasmus R. Schröder
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
8
|
Wagner P, Rominger F, Zhang W, Gross JH, Elbert SM, Schröder RR, Mastalerz M. Chiral Self‐sorting of Giant Cubic [8+12] Salicylimine Cage Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wen‐Shan Zhang
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Jürgen H. Gross
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
9
|
Zhang ZQ, Ren QX, Tian WF, Sun WH, Cao XP, Shi ZF, Chow HF, Kuck D. Synthesis of Enantiopure Hydrocarbon Cages Based on an Optically Resolved C3-Symmetric Triaminotribenzotriquinacene. Org Lett 2021; 23:1478-1483. [PMID: 33525871 DOI: 10.1021/acs.orglett.1c00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of the enantiomerically pure, D3-symmetric covalent hydrocarbon cages (+)-(M,M)-4 and (-)-(P,P)-4 bearing two C3-symmetrically functionalized tribenzobenzotriquinacene (TBTQ) vertices is reported. The enantiomerically pure TBTQ building blocks (+)-(M)-5 and (-)-(P)-5 were prepared via the diastereomeric TBTQ triamides obtained by use of both Boc-d- and Boc-l-phenylglycine as chiral auxiliaries.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qing-Xia Ren
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wan-Fa Tian
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wen-Hua Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zi-Fa Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hak-Fun Chow
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Wang X, Kohl B, Rominger F, Elbert SM, Mastalerz M. A Triptycene-Based Enantiopure Bis(Diazadibenzoanthracene) by a Chirality-Assisted Synthesis Approach. Chemistry 2020; 26:16036-16042. [PMID: 32648593 PMCID: PMC7756852 DOI: 10.1002/chem.202002781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/14/2022]
Abstract
By applying a chirality-assisted synthesis (CAS) approach enantiopure diaminodibromotriptycenes were converted to rigid chiral helical diazadibenzoanthracenes, which show besides pronounced Cotton effects in circular dichroism spectra higher photoluminescence quantum yields as comparable carbacyclic analogues. For the enantiopure building blocks, a protocol was developed allowing the large scale synthesis without the necessity of separation via HPLC.
Collapse
Affiliation(s)
- Xubin Wang
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Bernd Kohl
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
11
|
Li ZM, Tan Y, Ma YP, Cao XP, Chow HF, Kuck D. Chiral Derivatives of 2-Aminotribenzotriquinacene: Synthesis and Optical Resolution. J Org Chem 2020; 85:6478-6488. [PMID: 32271016 DOI: 10.1021/acs.joc.0c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Starting from a hitherto unknown 2-aminotribenzotriquinacene, several 2-amino-3-X-substituted TBTQ derivatives, all bearing a single ortho-difunctionalized indane wing, were synthesized as rigid and chiral building blocks for the potential construction of complex supramolecular architectures. Efficient access to two pairs of enantiomeric TBTQ derivatives, namely, the peripheral ortho-nitroaniline (X = NO2) and the related anthranilic acid (X = CO2H), was developed using chiral auxiliaries as the resolving reagents. The structure of the intermediate diastereomers was confirmed by 1H and 13C NMR spectroscopy, high-resolution mass spectroscopy (HRMS), and polarimetry. The absolute configuration of the optically active derivatives was confirmed by quantum chemical time-dependent density functional theory (TD-DFT) calculations of the theoretical electronic circular dichroism (ECD) spectra and by single-crystal X-ray structure analysis of a synthesis intermediate.
Collapse
Affiliation(s)
- Zhi-Min Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yingfei Tan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - You-Ping Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hak-Fun Chow
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|