1
|
Shoji T, Ito S. Recent Progress in the Chemistry of Ring-Fused Azulenes: Synthesis, Reactivity and Properties. Chem Asian J 2025; 20:e202500166. [PMID: 40066974 DOI: 10.1002/asia.202500166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Azulene, a non-alternative aromatic hydrocarbon, has attracted significant attention due to its unique electronic properties, and potential applications in organic electronics and optoelectronics. This review highlights recent advances in the synthesis, reactivity, and functional properties of ring-fused azulene derivatives. The discussion encompasses classical synthetic routes, including the Ziegler-Hafner and Nozoe methods, as well as novel approaches such as transition metal-catalyzed cyclizations. Key advancements in the construction of benzo[a]azulenes, naphthoazulenes, and other polycyclic azulene frameworks are detailed, emphasizing their regioselective functionalization and enhanced stability. Moreover, the incorporation of azulene moieties into polycyclic aromatic hydrocarbons (PAHs) and heterocyclic systems is explored, highlighting their potential applications in organic light-emitting diodes (OLEDs), field-effect transistors (OFETs), and photovoltaic devices. Special attention is given to azulene-fused helicenes and nanographenes, which demonstrate promising chiroptical properties and extended π-conjugation. This review aims to provide a comprehensive overview of the synthetic strategies and emerging applications of azulene-based compounds, contributing to the development of advanced materials for future electronic and photonic technologies.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, 963-8642, Fukushima, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Aomori, Japan
| |
Collapse
|
2
|
Li WD, Fan J, Li CJ, Shi XY. Recent advances in carboxyl-directed dimerizations and cascade annulations via C-H activations. Chem Commun (Camb) 2025; 61:3967-3985. [PMID: 39945206 DOI: 10.1039/d4cc06722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
C-H functionalization provides an efficient route to construct complex organic molecules. The introduction of directing groups enhances the site-selectivity of the reaction. Carboxyl as a directing group can be easily transformed into other functional groups afterwards. Due to its good reactivity, it can undergo cascade annulation reactions to build valuable heterocycle skeletons in one pot. Moreover, carboxyl can easily be removed via decarboxylation, which allows it to serve as a unique traceless directing group in C-H functionalization. These characteristics make carboxyl a promising directing group, which is superior to nitrogen-containing compounds with strong coordination ability to a certain extent. This feature article reviews the applications of carboxyl as a classical directing group and a unique traceless-directing group in cascade annulation reactions to access diverse carbocycles and heterocycles.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Chao-Jun Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada.
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
3
|
Kanganavaree C, Kantarod K, Worakul T, Soorukram D, Kuhakarn C, Chakarawet K, Wattanathana W, Surawatanawong P, Reutrakul V, Leowanawat P. Palladium-Catalyzed Double Decarboxylative [3 + 2] Annulation of Naphthalic Anhydrides with Internal Alkynes. J Org Chem 2024; 89:15083-15090. [PMID: 39369427 DOI: 10.1021/acs.joc.4c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A palladium-catalyzed [3 + 2] annulation of naphthalic anhydrides with internal alkynes has been developed. The present protocol offers an efficient and convenient route to access a series of 1,2-disubstituted acenaphthylenes with excellent functional group compatibility. The reaction is proposed to proceed through a double decarboxylation sequence. The reported synthetic protocols can be extended to napthalene- and perylenedicarboximide-containing substrates. The molecular structures, photophysical properties, and frontier molecular orbitals of the obtained adducts were investigated by X-ray crystallography, UV-vis and fluorescence spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Chaipot Kanganavaree
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Kritchasorn Kantarod
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Thanapat Worakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Khetpakorn Chakarawet
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Panida Surawatanawong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Hatakenaka R, Nishikawa N, Mikata Y, Aoyama H, Yamashita K, Shiota Y, Yoshizawa K, Kawasaki Y, Tomooka K, Kamijo S, Tani F, Murafuji T. Efficient Synthesis and Structural Analysis of Chiral 4,4'-Biazulene. Chemistry 2024; 30:e202400098. [PMID: 38376431 DOI: 10.1002/chem.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
4,4'-Biazulene is a potentially attractive key component of an axially chiral biaryl compound, however, its structure and properties have not been clarified owing to the lack of its efficient synthesis. We report a breakthrough in the reliable synthesis of 4,4'-biazulene, which is achieved by the access to azulen-4-ylboronic acid pinacol ester and 4-iodoazulene as novel key synthetic intermediates for the Suzuki-Miyaura cross-coupling reaction. The X-ray crystallographic analysis of 4,4'-biazulene confirmed its axial chirality. The enantiomers of 4,4'-biazulene were successfully resolved by HPLC on the chiral stationary phase column. The kinetic experiments and DFT calculations indicate that the racemization energy barrier of 4,4'-biazulene is comparable to that of 1,1'-binaphthyl.
Collapse
Affiliation(s)
- Ryoji Hatakenaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Nanami Nishikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Yuji Mikata
- Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara, 630-8506, Japan
| | - Hiroki Aoyama
- Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kohsuke Yamashita
- Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuuya Kawasaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Shin Kamijo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshihiro Murafuji
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| |
Collapse
|
5
|
Park S, Kim CE, Jeong J, Ryu H, Maeng C, Kim D, Baik MH, Lee PH. Selective ring expansion and C-H functionalization of azulenes. Nat Commun 2023; 14:7936. [PMID: 38040685 PMCID: PMC10692195 DOI: 10.1038/s41467-023-43200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
We report a transition metal-catalyzed ring expansion of azulene that can be contrasted with C-H functionalization. This study represents the first example of the successful ring expansion of azulene using Cu(hfacac)2 (hfacac: hexafluoroacetylacetonate) with a diazo reagent. This result is notable for extending the Buchner reaction, previously limited to benzenoid aromatics, to nonbenzenoid compounds. The chemoselectivity of the reaction can be directed towards C-H functionalization by substituting the Cu catalyst with AgOTf. This approach does not require the addition of phosphine, NHC, or related ligands, and prefunctionalization of azulenes is unnecessary. Furthermore, the method exhibits excellent functional group tolerance, allowing for the synthesis of a wide range of 6,7-bicyclic compounds and C-H functionalized azulenes. We also present a theoretical study that explains the experimental observations, explaining why copper afford the ring expansion product while silver forms the C-H alkylation product.
Collapse
Affiliation(s)
- Sangjune Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- National Creative Research Initiative Center for Catalytic Organic Reactions, Chuncheon, 24341, Republic of Korea
| | - Cheol-Eui Kim
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- National Creative Research Initiative Center for Catalytic Organic Reactions, Chuncheon, 24341, Republic of Korea
| | - Jinhoon Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Ho Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- National Creative Research Initiative Center for Catalytic Organic Reactions, Chuncheon, 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- National Creative Research Initiative Center for Catalytic Organic Reactions, Chuncheon, 24341, Republic of Korea.
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Zhang J, Xu W, Zhuang W, Chen X, Zhang X, Huang Q. Rhodaelectro-Catalyzed Decarboxylative Cross-Dehydrogenative Coupling of Indole-3-carboxylic Acids and Olefins via Weakly Coordinating Carboxyl Groups. J Org Chem 2023; 88:15198-15208. [PMID: 37863844 DOI: 10.1021/acs.joc.3c01690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A rhodaelectro-catalyzed C2-H selectively decarboxylative alkenylation of 3-carboxy-1H-indoles employing electricity as the traceless terminal oxidant has been accomplished. The weakly coordinating carboxyl group serves as the traceless directing groups. External oxidant-free in an undivided cell with constant current in aqueous solution ensures the decarboxylative C-H alkenylation to be viable and sustainable.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weijie Xu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
7
|
Vardanyan A, Villinger A, Ehlers P, Langer P. Synthesis and Properties of Carbo- and Heterocyclic Benz[ a]azulenes. J Org Chem 2023; 88:11411-11423. [PMID: 37540628 DOI: 10.1021/acs.joc.2c02997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
A new and convenient synthesis of aryl-substituted naphtho[2,1-a]azulenes by the combination of Suzuki-Miyaura, Sonogashira, and cycloisomerization reactions is reported. The methodology was applied to the synthesis of hitherto unknown azuleno[1,2-h]quinolines, cyclohepta[1,2]indeno[4,5-b]thiophenes, and cyclohepta[1,2]indeno[4,5-c]thiophenes. The impact of different fused-heterocyclic rings on the photophysical and electrochemical properties of these azulene derivatives was studied by experimental and theoretical methods and hence provides a rationale for the preparation of novel azulene derivatives with improved properties for application as organic materials.
Collapse
Affiliation(s)
- Arpine Vardanyan
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz Institut für Katalyse an der Universität Rostock, A.-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz Institut für Katalyse an der Universität Rostock, A.-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
8
|
Arsenov MA, Muratov DV, Nelyubina YV, Loginov DA. Tandem C-H Annulation Reaction of Benzaldehydes and Aminobenzoic Acids with Two Equivalents of Alkyne toward Isocoumarin-Conjugated Isoquinolinium Salts: A Family of Organic Luminophores. J Org Chem 2023. [PMID: 37327394 DOI: 10.1021/acs.joc.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel rhodium-catalyzed tandem C-H annulation of commercially available benzaldehydes and aminobenzoic acids with 2 equiv of alkyne is reported for the construction of isocoumarin-conjugated isoquinolinium salts that demonstrate diverse outstanding photoactivity. Depending on the substituents in the isoquinolinium moiety, they display either highly efficient fluorescence (up to 99% of quantum yield) or strong fluorescence quenching, which is provided by the transfer of the HOMO from the isoquinolinium to the isocoumarin moiety. Importantly, the functional groups in the benzaldehyde coupling partner also strongly affect the reaction selectivity, shifting the pathway to the formation of the photoinactive isocoumarin-substituted indenone imines and indenyl amines. Selective formation of the latter can be achieved by using a reduced amount of the oxidizing additive.
Collapse
Affiliation(s)
- Mikhail A Arsenov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
| | - Dmitry V Muratov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
| | - Dmitry A Loginov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
- G. V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation
| |
Collapse
|
9
|
Shankar M, Kumara Swamy KC. Ru( ii)-catalysed oxidative (4 + 2) annulation of chromene and coumarin carboxylic acids with alkynes/propargylic alcohols: isolation of Ru(0) complexes. Org Biomol Chem 2023; 21:195-208. [DOI: 10.1039/d2ob01890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ru(ii)-catalysed oxidative (4 + 2) annulation of chromene and coumarin carboxylic acids with alkynes affords pyrano-chromones via vinylic C–H bond activation; use of methyl-tethered propargylic alcohols instead of alkynes gives Ru(0) complexes.
Collapse
Affiliation(s)
- Mallepalli Shankar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
10
|
Maeng C, Yun Y, Son JY, Lee PH. Palladium‐Catalyzed Oxidative Cyclization of Azulene‐2‐carboxylic Acids with 1,3‐Dienes for the Synthesis of Alkenyl Azulenolactones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Jeong-Yu Son
- Kangwon National University KOREA (THE REPUBLIC OF)
| | - Phil Ho Lee
- Kangwon National University KOREA (THE REPUBLIC OF)
| |
Collapse
|
11
|
Elwahy AHM, Shaaban MR, Abdelhamid IA. Recent Advances in the Functionalization of Azulene Through Rh‐, Ir‐, Ru‐, Au‐, Fe‐, Ni‐, and Cu‐catalyzed Reactions. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mohamed R. Shaaban
- Chemistry Department, Faculty of Applied Sciences, Makkah Almukkarramah, Umm AL‐Qura University Saudi Arabia
| | | |
Collapse
|
12
|
Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. Transition-Metal-Catalyzed C–C Bond-Forming Reactions via C–H Activation for the Development of Fluorescent Materials with Practical Value. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
13
|
Maeng C, Lee PH. Synthesis of azulenolactones through sequential C(2)‐bromoarylation and intramolecular CO bond formation from azulene‐1‐carboxylic acids and di(2‐bromoaryl)iodonium salts in
one pot. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chanyoung Maeng
- Department of Chemistry Kangwon National University Chuncheon Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry Kangwon National University Chuncheon Republic of Korea
| |
Collapse
|
14
|
Murai M. Silylative Cyclization with Dehydrogenation Leading to Benzosilole‐Fused Azulenes Showing Unique Stimuli‐Responsive Fluorescence. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masahito Murai
- Department of Chemistry Graduate School of Science Nagoya University Furo, Chikusa 464-8602 Nagoya Japan
| |
Collapse
|
15
|
Li M, Wang DH. Copper-Catalyzed 3-Positional Amination of 2-Azulenols with O-Benzoylhydroxylamines. Org Lett 2021; 23:6638-6641. [PMID: 34388336 DOI: 10.1021/acs.orglett.1c02132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed ortho-selective amination of 2-azulenols with O-benzoylhydroxylamines (RR'N-OBz) to synthesize ortho-aminoazulenols is reported. A wide range of functional groups on amines are compatible, furnishing the corresponding amino-azulene derivatives in moderate to good yields. The further synthetic elaboration using 3-amino-2-azulenols as starting materials is demonstrated.
Collapse
Affiliation(s)
- Meng Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Dong-Hui Wang
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Wang J, Yu J, Chen J, Jiang Y, Xiao T. Doyle-Kirmse reaction using 3,3-difluoroallyl sulfide and N-sulfonyl-1,2,3-triazole: an efficient access to gem-difluoroallylated multifunctional quaternary carbon. Org Biomol Chem 2021; 19:6974-6978. [PMID: 34338276 DOI: 10.1039/d1ob01129d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Doyle-Kirmse reaction of N-sulfonyl-1,2,3-triazole with 3,3-difluoroallyl sulfide through a Rh(ii)-catalyzed [2,3]-sigmatropic rearrangement has been developed, which provides an efficient access to multifunctional quaternary centers containing aryl, imino, thio, and brominated gem-difluoroallyl groups. The reaction features broad substrate scope with moderate to excellent yields. The applicability of the method is confirmed by gram-scale synthesis and further transformations.
Collapse
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. of China.
| | | | | | | | | |
Collapse
|
17
|
Ko GH, Maeng C, Jeong H, Han SH, Han GU, Lee K, Noh HC, Lee PH. Rhodium(III)-Catalyzed Sequential C-H Activation and Cyclization from N-Methoxyarylamides and 3-Diazooxindoles for the Synthesis of Isochromenoindolones. Chem Asian J 2021; 16:3179-3187. [PMID: 34387948 DOI: 10.1002/asia.202100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Indexed: 12/22/2022]
Abstract
An efficient synthetic method for structurally various isochromenoindolones has been demonstrated through Rh(III)-catalyzed C-H activation followed by a cyclization reaction of N-methoxyarylamides with 3-diazooxindoles. The sequential reaction involves the streamlined formation of C-C and C-O bonds in one pot. The present method provides a broad range of isochromenoindolones as a new privileged scaffold in moderate to good yields with the release of methoxyamine and molecular nitrogen and has the benefits of a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Haneal Jeong
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| |
Collapse
|
18
|
Williams GE, Kociok-Köhn G, James TD, Lewis SE. C4-aldehyde of guaiazulene: synthesis and derivatisation. Org Biomol Chem 2021; 19:2502-2511. [PMID: 33661271 DOI: 10.1039/d0ob02567d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guaiazulene is an alkyl-substituted azulene available from natural sources and is a much lower cost starting material for the synthesis of azulene derivatives than azulene itself. Here we report an approach for the selective functionalisation of guaiazulene which takes advantage of the acidity of the protons on the guaiazulene C4 methyl group. The aldehyde produced by this approach constitutes a building block for the construction of azulenes substituted on the seven-membered ring. Derivatives of this aldehyde synthesised by alkenylation, reduction and condensation are reported, and the halochromic properties of a subset of these derivatives have been studied.
Collapse
|
19
|
Lee SC, Son J, Kim JY, Eom H, Jang SB, Lee PH. Regioselective and Chemodivergent Synthesis of Azulenolactones and Azulenolactams from Rhodium(III)‐Catalyzed Reactions of Azulenecarboxamides with Sulfoxonium Ylides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Seung Cheol Lee
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Jeong‐Yu Son
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Jin Young Kim
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Hyeonsik Eom
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Seong Bin Jang
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Phil Ho Lee
- The Korean Academy of Science and Technology Seongnam 13630 Republic of Korea
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
20
|
Ibrahim HM, Behbehani H. Palladium-Catalyzed Q-Tube-Assisted Protocol for Synthesizing Diaza-dibenzo[ a, e]azulene and Diaza-benzo[ a]fluorene Derivatives via O 2 Acid-Promoted Cross-Dehydrogenative Coupling. J Org Chem 2020; 85:15368-15381. [PMID: 33147024 DOI: 10.1021/acs.joc.0c02186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An appropriate and efficient Q-tube-assisted palladium-catalyzed strategy for the synthesis of novel, unparalleled diaza-dibenzo[a,e]azulene and diaza-benzo[a]fluorene derivatives has been sophisticated, which includes oxygen and AcOH-induced oxidative C(sp3)-C(sp2) cross-dehydrogenative coupling reactions of 1-amino-2-imino-4-arylpyridine-3-carbonitriles with benzocyclic ketones such as benzosuberone, tetralone, thiochromone, and chromone, respectively. This Q-tube gas purging kit assisted-protocol features safe due to easy pressing and sealing, a wide substrate scope, easy workup and purifying phases, and the use of O2 as a benign oxidant, in addition to being scalable and having a high atom economy. The suggested mechanistic pathway includes a formal dehydrative step followed by palladium AcOH-induced CH(sp3)-CH(sp2) oxidative cross-coupling. In this study, X-ray crystallographic analysis has been used to authenticate the targeted products.
Collapse
Affiliation(s)
- Hamada Mohamed Ibrahim
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.,Chemistry Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum 63514, Egypt
| | - Haider Behbehani
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
21
|
Kharitonov VB, Ostrovskii VS, Nelyubina YV, Muratov DV, Chusov D, Loginov DA. Tris(pyrazolyl)borate rhodium complexes. Application for reductive amination and esterification of aldehydes in the presence of carbon monoxide. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Han GU, Son J, Park D, Eom H, Lee K, Noh HC, Lee K, Lee PH. Synthesis of Azulenopyridinones through Palladium‐Catalyzed Oxidative [4+2] Cyclization Reactions of
N
‐Methoxyazulene‐1‐ and 2‐carboxamides with Alkynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gi Uk Han
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Jeong‐Yu Son
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Dahee Park
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Hyeonsik Eom
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology Kangwon National University Chuncheon 24341 Republic of Korea
| | - Phil Ho Lee
- The Korean Academy of Science and Technology Seongnam 13630 Republic of Korea
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
23
|
Pigulski B, Shoyama K, Würthner F. NIR-Absorbing π-Extended Azulene: Non-Alternant Isomer of Terrylene Bisimide. Angew Chem Int Ed Engl 2020; 59:15908-15912. [PMID: 32441847 PMCID: PMC7540366 DOI: 10.1002/anie.202005376] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/11/2022]
Abstract
The first planar π-extended azulene that retains aromaticity of odd-membered rings was synthesized by [3+3] peri-annulation of two naphthalene imides at both long-edge sides of azulene. Using bromination and subsequent nucleophilic substitution by methoxide and morpholine, selective functionalization of the π-extended azulene was achieved. Whilst these new azulenes can be regarded as isomers of terrylene bisimide they exhibit entirely different properties, which include very narrow optical and electrochemical gaps. DFT, TD-DFT, as well as nucleus-independent chemical shift calculations were applied to explain the structural and functional properties of these new π scaffolds. Furthermore, X-ray crystallography confirmed the planarity of the reported π-scaffolds and aromaticity of their azulene moiety.
Collapse
Affiliation(s)
- Bartłomiej Pigulski
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
24
|
Maeng C, Seo HJ, Jeong H, Lee K, Noh HC, Lee PH. Iridium(III)-Catalyzed Sequential C(2)-Arylation and Intramolecular C–O Bond Formation from Azulenecarboxylic Acids and Diaryliodonium Salts Access to Azulenofuranones. Org Lett 2020; 22:7267-7272. [DOI: 10.1021/acs.orglett.0c02607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Jin Seo
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haneal Jeong
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- The Korean Academy of Science and Technology, Seongnam 13630, Republic of Korea
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
25
|
Pigulski B, Shoyama K, Würthner F. NIR‐Absorbing π‐Extended Azulene: Non‐Alternant Isomer of Terrylene Bisimide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bartłomiej Pigulski
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
26
|
Affiliation(s)
- Zhuang Mao Png
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck Lip Dexter Tam
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|