1
|
DeCecco AC, Conrad AR, Floyd AM, Jasper AW, Hansen N, Dagaut P, Moody NE, Popolan-Vaida DM. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde. Phys Chem Chem Phys 2024; 26:22319-22336. [PMID: 38980126 DOI: 10.1039/d4cp01942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The reaction of unsaturated compounds with ozone (O3) is recognized to lead to the formation of Criegee intermediates (CIs), which play a key role in controlling the atmospheric budget of hydroxyl radicals and secondary organic aerosols. The reaction network of two CIs with different functionality, i.e. acetaldehyde oxide (CH3CHOO) and glyoxal oxide (CHOCHOO) formed in the ozone-assisted oxidation reaction of crotanaldehyde (CA), is investigated over a temperature range between 390 K and 840 K in an atmospheric pressure jet-stirred reactor (JSR) at a residence time of 1.3 s, stoichiometry of 0.5 with a mixture of 1% crotonaldehyde, 10% O2, at an fixed ozone concentration of 1000 ppm and 89% Ar dilution. Molecular-beam mass spectrometry in conjunction with single photon tunable synchrotron vacuum-ultraviolet (VUV) radiation is used to identify elusive intermediates by means of experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Addition of ozone (1000 ppm) is observed to trigger the oxidation of CA already at 390 K, which is below the temperature where the oxidation reaction of CA was observed in the absence of ozone. The observed CA + O3 product, C4H6O4, is found to be linked to a ketohydroperoxide (2-hydroperoxy-3-oxobutanal) resulting from the isomerization of the primary ozonide. Products corresponding to the CIs uni- and bi-molecular reactions were observed and identified. A network of CI reactions is identified in the temperature region below 600 K, characterized by CIs bimolecular reactions with species like aldehydes, i.e., formaldehyde, acetaldehyde, and crotonaldehyde and alkenes, i.e., ethene and propene. The region below 600 K is also characterized by the formation of important amounts of typical low-temperature oxidation products, such as hydrogen peroxide (H2O2), methyl hydroperoxide (CH3OOH), and ethyl hydroperoxide (C2H5OOH). Detection of additional oxygenated species such as alcohols, ketene, and aldehydes are indicative of multiple active oxidation routes. This study provides important information about the initial step involved in the CIs assisted oligomerization reactions in complex reactive environments where CIs with different functionalities are reacting simultaneously. It provides new mechanistic insights into ozone-assisted oxidation reactions of unsaturated aldehydes, which is critical for the development of improved atmospheric and combustion kinetics models.
Collapse
Affiliation(s)
- Alec C DeCecco
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Alan R Conrad
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Arden M Floyd
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Philippe Dagaut
- Centre National de la Recherche Scientifique (CNRS), ICARE, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
| | - Nath-Eddy Moody
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
2
|
Smith Lewin C, Kumar A, Herbinet O, Arnoux P, Asgher R, Barua S, Battin-Leclerc F, Farhoudian S, Garcia GA, Tran LS, Vanhove G, Nahon L, Rissanen M, Bourgalais J. 1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry. J Phys Chem A 2024; 128:5374-5385. [PMID: 38917032 DOI: 10.1021/acs.jpca.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | | | - Rabbia Asgher
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Shawon Barua
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | - Sana Farhoudian
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Luc-Sy Tran
- PC2A, Université Lille, CNRS, F-59000 Lille, France
| | | | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | | |
Collapse
|
3
|
He X, Li M, Shu B, Fernandes R, Moshammer K. Exploring the Effect of Different Reactivity Promoters on the Oxidation of Ammonia in a Jet-Stirred Reactor. J Phys Chem A 2023; 127:1923-1940. [PMID: 36800895 DOI: 10.1021/acs.jpca.2c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The low reactivity of ammonia (NH3) is the main barrier to applying neat NH3 as fuel in technical applications, such as internal combustion engines and gas turbines. Introducing combustion promoters as additives in NH3-based fuel can be a feasible solution. In this work, the oxidation of ammonia by adding different reactivity promoters, i.e., hydrogen (H2), methane (CH4), and methanol (CH3OH), was investigated in a jet-stirred reactor (JSR) at temperatures between 700 and 1200 K and at a pressure of 1 bar. The effect of ozone (O3) was also studied, starting from an extremely low temperature (450 K). Species mole fraction profiles as a function of the temperature were measured by molecular-beam mass spectrometry (MBMS). With the help of the promoters, NH3 consumption can be triggered at lower temperatures than in the neat NH3 case. CH3OH has the most prominent effect on enhancing the reactivity, followed by H2 and CH4. Furthermore, two-stage NH3 consumption was observed in NH3/CH3OH blends, whereas no such phenomenon was found by adding H2 or CH4. The mechanism constructed in this work can reasonably reproduce the promoting effect of the additives on NH3 oxidation. The cyanide chemistry is validated by the measurement of HCN and HNCO. The reaction CH2O + NH2 ⇄ HCO + NH3 is responsible for the underestimation of CH2O in NH3/CH4 fuel blends. The discrepancies observed in the modeling of NH3 fuel blends are mainly due to the deviations in the neat NH3 case. The total rate coefficient and the branching ratio of NH2 + HO2 are still controversial. The high branching fraction of the chain-propagating channel NH2 + HO2 ⇄ H2NO + OH improves the model performance under low-pressure JSR conditions for neat NH3 but overestimates the reactivity for NH3 fuel blends. Based on this mechanism, the reaction pathway and rate of production analyses were conducted. The HONO-related reaction routine was found to be activated uniquely by adding CH3OH, which enhances the reactivity most significantly. It was observed from the experiment that adding ozone to the oxidant can effectively initiate NH3 consumption at temperatures below 450 K but unexpectedly inhibit the NH3 consumption at temperatures higher than 900 K. The preliminary mechanism reveals that adding the elementary reactions between NH3-related species and O3 is effective for improving the model performance, but their rate coefficients have to be refined.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Mengdi Li
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Bo Shu
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Ravi Fernandes
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Kai Moshammer
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| |
Collapse
|
4
|
Li M, Niu H, Shang K, Gao Y, Li B, Jiang L, Zhao Z, Li X, Wang S, Feng Y, Li S. Surprising Hydrophobic Polymer Surface with a High Content of Hydrophilic Polar Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15353-15360. [PMID: 36454949 DOI: 10.1021/acs.langmuir.2c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The wetting property of a solid surface has been a hotspot for centuries, and many studies suggest that the hydrophobicity is highly related to the polar components. However, the underlying mechanism of polar moieties on the hydrophobicity remains unclear. Here, we tailor the surface polar moieties of epoxy resin (EP) by ozone modification and assess their wetting properties. Our results show that, for the modified EP with more (60.54%) polar moieties, the polar effect on hydrophobicity cannot be empirically observed. To reveal the underlying mechanism, the absorption parameters, including equilibrium distance, adsorption radius, and effective adsorption sites for water on EP before and after ozone treatment, are calculated on the basis of molecular simulations. After ozone modification, the equilibrium distance (from 1.95 to 1.70 Å), adsorption radius (from 3.80 to 4.50 Å), and effective adsorption sites (from 1 to 2) change slightly and the EP surface remains hydrophobic, although the polar groups significantly increase. Therefore, it is concluded that the wetting properties of solid surfaces are dominated by the equilibrium distance, adsorption radius, and effective adsorption sites for water on solids, and the nonlinear relationship between polar groups and hydrophilicity is clarified.
Collapse
Affiliation(s)
- Mingru Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Huan Niu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Kai Shang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Yafang Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Bingnan Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Liuhao Jiang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Zhonghua Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Xinyu Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Shihang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Yang Feng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
5
|
Fan H, Ma J, Zhu L, Liu B, Liu F, Shan X, Wang Z, Wang L. Unusual Diradical Intermediates in Ozonolysis of Alkenes: A Combined Theoretical and Synchrotron Radiation Photoionization Mass Spectrometric Study on Ozonolysis of Alkyl Vinyl Ethers. J Phys Chem A 2022; 126:8021-8027. [DOI: 10.1021/acs.jpca.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanlin Fan
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Ma
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Zhu
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Bingzhi Liu
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Fuyi Liu
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Xiaobin Shan
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Rousso AC, Jasper AW, Ju Y, Hansen N. Extreme Low-Temperature Combustion Chemistry: Ozone-Initiated Oxidation of Methyl Hexanoate. J Phys Chem A 2020; 124:9897-9914. [PMID: 33174431 DOI: 10.1021/acs.jpca.0c07584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(═O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry φ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.
Collapse
Affiliation(s)
- Aric C Rousso
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|