1
|
Ryzhako AS, Tuma AA, Otlyotov AA, Minenkov Y. An influence of electronic structure theory method, thermodynamic and implicit solvation corrections on the organic carbonates conformational and binding energies. J Comput Chem 2024; 45:3004-3016. [PMID: 39286905 DOI: 10.1002/jcc.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
An impact of an electronic structure or force field method, gas-phase thermodynamic correction, and continuum solvation model on organic carbonate clusters (S)n conformational and binding energies is explored. None of the tested force field (GFN-FF, GAFF, MMFF94) and standard semiempirical methods (PM3, AM1, RM1, PM6, PM6-D3, PM6-D3H4, PM7) can reproduce reference RI-SCS-MP2 conformational energies. Tight-binding GFNn-xTB methods provide more realistic conformational energies which are accurate enough to discard the least stable conformers. The effect of thermodynamic correction is moderate and can be ignored if the gas phase conformational stability ranking is a goal. The influence of continuum solvation is stronger, especially if reinforced with the Gibbs free energy thermodynamic correction, and results in the reduced spread of conformational energies. The cluster formation binding energies strongly depend on a particular approach to vibrational thermochemistry with the difference between traditional harmonic and modified scaled rigid - harmonic oscillator approximations reaching 10 kcal mol-1.
Collapse
Affiliation(s)
- Alexander S Ryzhako
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
- The Faculty of Natural Sciences, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
| | - Anna A Tuma
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Arseniy A Otlyotov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
| | - Yury Minenkov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
| |
Collapse
|
2
|
Alessandrini S, Ye H, Biczysko M, Puzzarini C. Describing the Disulfide Bond: From the Density Functional Theory and Back through the "Lego Brick" Approach. J Phys Chem A 2024; 128:9383-9397. [PMID: 39423025 DOI: 10.1021/acs.jpca.4c05198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Selected molecular species containing the disulfide bond, RSSR, have been considered, these ranging from hydrogen disulfide, H2S2 (R = H), to diphenyl disulfide with R = C6H5. The aim of this work is two-fold: (i) to investigate different computational approaches in order to derive accurate equilibrium structures at an affordable cost, (ii) to employ the results from the first goal in order to benchmark cheaper methodologies rooted in the density functional theory. Among the strategies used for the accurate geometrical determinations, the semiexperimental approach has been exploited in combination with a reduced-dimensionality VPT2 model, without however obtaining satisfactory results. Instead, the so-called "Lego brick" approach turned out to be very effective despite the flexibility of the systems investigated. Concerning the second target of this work, the focus was mainly on the S-S bond and the structural parameters related to it. Among those tested, PBE0(-D3BJ), M06-2X(-D3) and DSD-PBEP86-D3BJ have been found to be the best-performing functionals.
Collapse
Affiliation(s)
- Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Hexu Ye
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Malgorzata Biczysko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
3
|
Xu R, Jiang Z, Yang Q, Bloino J, Biczysko M. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J Comput Chem 2024; 45:1846-1869. [PMID: 38682874 DOI: 10.1002/jcc.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Collapse
Affiliation(s)
- Ruiqin Xu
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | | | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czechia
| | - Julien Bloino
- Classe di Scienze, Scuola Normale Superiore, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Barone V, Uribe Grajales LM, Di Grande S, Lazzari F, Mendolicchio M. DFT Meets Wave-Function Methods for Accurate Structures and Rotational Constants of Histidine, Tryptophan, and Proline. J Phys Chem A 2023; 127:7534-7543. [PMID: 37665117 PMCID: PMC10510395 DOI: 10.1021/acs.jpca.3c04227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/12/2023] [Indexed: 09/05/2023]
Abstract
A new computational strategy has been applied to the conformational and spectroscopic properties in the gas phase of amino acids with very distinctive features, ranging from different tautomeric forms (histidine) to ring puckering (proline), and heteroaromatic structures with non-equivalent rings (tryptophan). The integration of modern double-hybrid functionals and wave-function composite methods has allowed us to obtain accurate results for a large panel of conformers with reasonable computer times. The remarkable agreement between computations and microwave experiments allows an unbiased interpretation of the latter in terms of stereoelectronic effects.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Lina Marcela Uribe Grajales
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Mendolicchio
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
5
|
Barone V. Accurate structures and spectroscopic parameters of α,α-dialkylated α-amino acids in the gas-phase: a joint venture of DFT and wave-function composite methods. Phys Chem Chem Phys 2023; 25:22768-22774. [PMID: 37591810 DOI: 10.1039/d3cp02503a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Accurate computations of structural, conformational and spectroscopic properties in the gas phase have been performed for two α,α-dialkylated α-amino acids, namely aminoisobutyric acid and cyclopropylglycine. Thanks to the integration of modern double hybrid functionals and wave-function methods, several low-energy structures of the title molecules could be analyzed employing standard computer resources. The computed features of all the most stable conformers of the target amino acids closely match the corresponding spectroscopic parameters issued from microwave spectroscopic studies in the gas-phase. Together with their intrinsic interest, the accuracy of the results obtained with reasonable computer times paves the way for accurate investigations of other flexible bricks of life.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
6
|
Barone V, Fusè M. Accurate Structures and Spectroscopic Parameters of Phenylalanine and Tyrosine in the Gas Phase: A Joint Venture of DFT and Composite Wave-Function Methods. J Phys Chem A 2023; 127:3648-3657. [PMID: 37052318 PMCID: PMC10150396 DOI: 10.1021/acs.jpca.3c01174] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A general strategy for the accurate computation of conformational and spectroscopic properties of flexible molecules in the gas phase is applied to two representative proteinogenic amino acids with aromatic side chains, namely, phenylalanine and tyrosine. The main features of all the most stable conformers predicted by this computational strategy closely match those of the species detected in microwave and infrared experiments. Together with their intrinsic interest, the accuracy of the results obtained with reasonable computer times paves the route for accurate investigations of other flexible bricks of life.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Fusè
- DMMT-sede Europa, Università di Brescia, Viale Europa 11, 25121 Brescia, Italy
| |
Collapse
|
7
|
Barone V, Fusè M, Lazzari F, Mancini G. Benchmark Structures and Conformational Landscapes of Amino Acids in the Gas Phase: A Joint Venture of Machine Learning, Quantum Chemistry, and Rotational Spectroscopy. J Chem Theory Comput 2023; 19:1243-1260. [PMID: 36731119 PMCID: PMC9979611 DOI: 10.1021/acs.jctc.2c01143] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The accurate characterization of prototypical bricks of life can strongly benefit from the integration of high resolution spectroscopy and quantum mechanical computations. We have selected a number of representative amino acids (glycine, alanine, serine, cysteine, threonine, aspartic acid and asparagine) to validate a new computational setup rooted in quantum-chemical computations of increasing accuracy guided by machine learning tools. Together with low-lying energy minima, the barriers ruling their interconversion are evaluated in order to unravel possible fast relaxation paths. Vibrational and thermal effects are also included in order to estimate relative free energies at the temperature of interest in the experiment. The spectroscopic parameters of all the most stable conformers predicted by this computational strategy, which do not have low-energy relaxation paths available, closely match those of the species detected in microwave experiments. Together with their intrinsic interest, these accurate results represent ideal benchmarks for more approximate methods.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy,
| | - Marco Fusè
- DMMT-sede
Europa, Universitá di Brescia, viale Europa 11, 25121 Brescia, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giordano Mancini
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
8
|
Barone V, Di Grande S, Puzzarini C. Toward Accurate yet Effective Computations of Rotational Spectroscopy Parameters for Biomolecule Building Blocks. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020913. [PMID: 36677970 PMCID: PMC9863398 DOI: 10.3390/molecules28020913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
The interplay of high-resolution rotational spectroscopy and quantum-chemical computations plays an invaluable role in the investigation of biomolecule building blocks in the gas phase. However, quantum-chemical methods suffer from unfavorable scaling with the dimension of the system under consideration. While a complete characterization of flexible systems requires an elaborate multi-step strategy, in this work, we demonstrate that the accuracy obtained by quantum-chemical composite approaches in the prediction of rotational spectroscopy parameters can be approached by a model based on density functional theory. Glycine and serine are employed to demonstrate that, despite its limited cost, such a model is able to predict rotational constants with an accuracy of 0.3% or better, thus paving the way toward the accurate characterization of larger flexible building blocks of biomolecules.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-50126 Pisa, Italy
- Correspondence: (V.B.); (C.P.)
| | - Silvia Di Grande
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-50126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Cristina Puzzarini
- Rotational and Computational Spectroscopy Lab, Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
- Correspondence: (V.B.); (C.P.)
| |
Collapse
|
9
|
Liu Y, Liu CP, Mang CY, Wu KC. Upon DFT-D3 dispersion correction and ECD spectral confirmation, only several conformers can stably coexist for three fungal cycloaspeptides (A, D, G). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121710. [PMID: 35952587 DOI: 10.1016/j.saa.2022.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dispersion correction in theoretical determination of cyclopeptide conformations is emphasized. Whether in gas approximation or in solvation simulation, the density functional theory with London dispersion correction (DFT-D3) demonstrates that only 2-3 conformers can stably coexist for cycloaspeptides (A, D, G) at B3LYP-D3 and CAM-B3LYP-D3. Conformational rationality is confirmed by electronic circular dichroism (ECD). Whether for Cotton effect or for excitation energy, TD-B3LYP-D3 has better performances than TD-CAM-B3LYP-D3 because the former can better reproduce the experiment. A molecular orbital analysis is used to interpret ECD, where two energy bands observed in experiment originates from the ππ* transitions other than the σπ* transitions. Long-range correction and solvent effect make H-bonds shorten, and dispersion correction makes them further shorten.
Collapse
Affiliation(s)
- Yong Liu
- College of Pharmacy, Dali University, Dali 671000, China
| | - Cai-Ping Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chao-Yong Mang
- College of Pharmacy, Dali University, Dali 671000, China.
| | - Ke-Chen Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|