1
|
He Z, Chen M, Song Y, Wu F, Fu F, Wang Y. Regioselective Suzuki-Miyarua Cross-Coupling for Substituted 2,4-Dibromopyridines Catalyzed by C3-Symmetric Tripalladium Clusters. J Org Chem 2025; 90:1895-1904. [PMID: 39854297 DOI: 10.1021/acs.joc.4c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Multipalladium clusters possess peculiar structures and synergistic effects for reactivity and selectivity. Herein, C3-symmetric tripalladium clusters (1, 0.5 mol %) afford C2-regioselective SMCC of 2,4-dibromopyridine with phenylboronic acids or pinacol esters (C2:C4 up to 98:1), in contrast to Pd(OAc)2 in ligand-free conditions. In addition, similar C2-selectivity was achieved in Sonogashira, Negishi, and Kumada coupling reactions. This method highlights their powerful catalytic ability, exclusive C2-selectivity, broad substrate scope, efficient amplification, and multiple ligand-exchange feasibility and demonstrates that the conventional sites could be successfully regulated or even reversed by catalysts.
Collapse
Affiliation(s)
- Zhixin He
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yingrui Song
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Fen Wu
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Fangyu Fu
- School of Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dongguan 523000, China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Wang M, He Z, Chen M, Fu F, Wang Y. Heterogenization of Palladium Trimer and Nanoparticles Through Polymerization Boosted Catalytic Efficiencies in Recyclable Coupling and Reduction Reactions. Chemistry 2024; 30:e202403447. [PMID: 39401948 DOI: 10.1002/chem.202403447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
The development of heterogeneous palladium catalysts has shown continuous vitality in the field of catalysis and materials. In this work, we report one concise free radical polymerization approach to accomplish the aromatic palladium trimer functionalized polymers PSSy-[Pd3]+ (2) and its derived palladium nanoparticles (3). Full characterizations could confirm the successful combination of cationic [Pd3]+ or nanoparticles with poly(p-sulfonated styrene) skeleton. Compared to their monomeric tri-palladium precursor (1) and common Pd(dba)2, Pd(PPh3)4, Pd(OAc)2, heterogeneous PSSy-[Pd3]+ (2) shows much superior catalytic activities (0.15 mol %, TOF=1333.3 h-1) in the SMCC reaction. The identically ligated PdNPs (3) are formed in-suit in the presence of NaBH4 and accomplish quantitative reduction of 4-nitrophenol in just 320 s (0.50 mol %, TOF=2250 h-1). Moreover, these heterogeneous catalysts are reused for 5-6 times without significant loss of catalytic activity. Their superior catalytic ability is probably attributed to the synergistic effect of polymer entanglement and the tri-palladium fragment. This work enlightens that the immobilization of palladium clusters or nanoparticles by polymerization could offer multiple advantages in stability, efficiency and recyclability for their involved catalyses and show far-reaching future implications.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Zhixin He
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Fangyu Fu
- School of Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dongguan, 523000, China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| |
Collapse
|
3
|
Jeddi N, Scott NWJ, Tanner T, Beaumont SK, Fairlamb IJS. Evidence for Suzuki-Miyaura cross-couplings catalyzed by ligated Pd 3-clusters: from cradle to grave. Chem Sci 2024; 15:2763-2777. [PMID: 38404373 PMCID: PMC10882490 DOI: 10.1039/d3sc06447f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Pdn clusters offer unique selectivity and exploitable reactivity in catalysis. Understanding the behavior of Pdn clusters is thus critical for catalysis, applied synthetic organic chemistry and greener outcomes for precious Pd. The Pd3 cluster, [Pd3(μ-Cl)(μ-PPh2)2(PPh3)3][Cl] (denoted as Pd3Cl2), which exhibits distinctive reactivity, was synthesized and immobilized on a phosphine-functionalized polystyrene resin (denoted as immob-Pd3Cl2). The resultant material served as a tool to study closely the role of Pd3 clusters in a prototypical Suzuki-Miyaura cross-coupling of 4-fluoro-1-bromobenzene and 4-methoxyphenyl boronic acid at varying low Pd ppm concentrations (24, 45, and 68 ppm). Advanced heterogeneity tests such as Hg poisoning and the three-phase test showed that leached mononuclear or nanoparticulate Pd are unlikely to be the major active catalyst species under the reaction conditions tested. EXAFS/XANES analysis from (pre)catalyst and filtered catalysts during and after catalysis has shown the intactness of the triangular structure of the Pd3X2 cluster, with exchange of chloride (X) by bromide during catalytic turnover of bromoarene substrate. This finding is further corroborated by treatment of immob-Pd3Cl2 after catalyzing the Suzuki-Miyaura reaction with excess PPh3, which releases the cluster from the polymer support and so permits direct observation of [Pd3(μ-Br)(μ-PPh2)2(PPh3)3]+ ions by ESI-MS. No evidence is seen for a proposed intermediate in which the bridging halogen on the Pd3 motif is replaced by an aryl group from the organoboronic acid, i.e. formed by a transmetallation-first process. Our findings taken together indicate that the 'Pd3X2' motif is an active catalyst species, which is stabilized by being immobilized, providing a more robust Pd3 cluster catalyst system. Non-immobilized Pd3Cl2 is less stable, as is followed by stepwise XAFS of the non-immobilized Pd3Cl2, which gradually changes to a species consistent with 'Pdx(PPh3)y' type material. Our findings have far-reaching future implications for Pd3 cluster involvement in catalysis, showing that immobilization of Pd3 cluster species offers advantages for rigorous mechanistic examination and applied chemistries.
Collapse
Affiliation(s)
- Neda Jeddi
- Department of Chemistry, University of York York YO20 5DD UK
| | - Neil W J Scott
- Department of Chemistry, University of York York YO20 5DD UK
| | - Theo Tanner
- Department of Chemistry, University of York York YO20 5DD UK
| | - Simon K Beaumont
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | | |
Collapse
|
4
|
Wang M, Wang Y. Advances for Triangular and Sandwich-Shaped All-Metal Aromatics. Molecules 2024; 29:763. [PMID: 38398515 PMCID: PMC10892378 DOI: 10.3390/molecules29040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Much experimental work has been contributed to all-metal σ, π and δ-aromaticity among transition metals, semimetallics and other metals in the past two decades. Before our focused investigations on the properties of triangular and sandwich-shaped all-metal aromatics, A. I. Boldyrev presented general discussions on the concepts of all-metal σ-aromaticity and σ-antiaromaticity for metallo-clusters. Schleyer illustrated that Nucleus-Independent Chemical Shifts (NICS) were among the most authoritative criteria for aromaticity. Ugalde discussed the earlier developments of all-metal aromatic compounds with all possible shapes. Besides the theoretical predictions, many stable all-metal aromatic trinuclear clusters have been isolated as the metallic analogues of either the σ-aromatic molecule's [H3]+ ion or the π-aromatic molecule's [C3H3]+ ion. Different from Hoffman's opinion on all-metal aromaticity, triangular all-metal aromatics were found to hold great potential in applications in coordination chemistry, catalysis, and material science. Triangular all-metal aromatics, which were theoretically proved to conform to the Hückel (4n + 2) rule and possess the smallest aromatic ring, could also play roles as stable ligands during the formation of all-metal sandwiches. The triangular and sandwich-shaped all-metal aromatics have not yet been specifically summarized despite their diversity of existence, puissant developments and various interesting applications. These findings are different from the public opinion that all-metal aromatics would be limited to further applications due to their overstated difficulties in synthesis and uncertain stabilities. Our review will specifically focus on the summarization of theoretical predictions, feasible syntheses and isolations, and multiple applications of triangular and sandwich shaped all-metal aromatics. The appropriateness and necessities of this review will emphasize and disseminate their importance and applications forcefully and in a timely manner.
Collapse
Affiliation(s)
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China;
| |
Collapse
|
5
|
Yao J, Shao L, Kang X, Zhu M, Huo X, Wang X. Direct α-Arylation of Benzo[ b]furans Catalyzed by a Pd 3 Cluster. J Org Chem 2024; 89:1719-1726. [PMID: 38204281 DOI: 10.1021/acs.joc.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
As an interim paradigm for the catalysts between those based on more conventional mononuclear molecular Pd complexes and Pdn nanoparticles widely used in organic synthesis, polynuclear palladium clusters have attracted great attention for their unique reactivity and electronic properties. However, the development of Pd cluster catalysts for organic transformations and mechanistic investigations is still largely unexploited. Herein, we disclose the use of trinuclear palladium (Pd3Cl) species as an active catalyst for the direct C-H α-arylation of benzo[b]furans with aryl iodides to afford 2-arylbenzofurans in good yields under mild conditions. With this method, broad substrate adaptability was observed, and several drug intermediates were synthesized in high yields. Mechanistic studies indicated that the Pd3 core most likely remained intact throughout the reaction course.
Collapse
Affiliation(s)
- Jian Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lili Shao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
6
|
Wang M, He Z, Chen M, Wang Y. Aryl sulfonate anion stabilized aromatic triangular cation [Pd 3] +: syntheses, structures and properties. RSC Adv 2023; 13:29689-29694. [PMID: 37822652 PMCID: PMC10563175 DOI: 10.1039/d3ra04460b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
A series of sulfonate anions paired aromatic triangular palladium clusters 3-7, abbreviated as [Pd3]+[ArSO3]-, were synthesized using a simple "one pot" method, and gave excellent isolated yields (90-95%). Their structures and properties have been fully characterized and further investigated by fluorescence, single crystal X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). In varying organic solvents, they presented apparently stronger absorption and emission in MeOH, driven by the combined interactions of hydrogen bonds and polarity. The crystallographic data demonstrated that the methyl orange ion stabilized complex 7 possessed a D3h symmetric metallic core which was still coplanar and almost equilateral, jointly influenced by the giant hindrance and milder donating effect from the sulfonate. The binding energies for Pdn+ 3d5/2 and Pdn+ 3d3/2 measured by XPS presented at 336.55 and 342.00 eV, respectively. These data were much lower than that of a usual Pd2+ 3d and significantly higher than that of a Pd0 species, further proving the unified palladium valence state (+4/3) in the tri-palladium core and its aromaticity featured by the cyclic electron delocalization.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Zhixin He
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| |
Collapse
|
7
|
Jeddi N, Scott NWJ, Fairlamb IJS. Well-Defined Pd n Clusters for Cross-Coupling and Hydrogenation Catalysis: New Opportunities for Catalyst Design. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neda Jeddi
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Neil W. J. Scott
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| |
Collapse
|
8
|
Bigi F, Cauzzi D, Della Ca’ N, Malacria M, Maggi R, Motti E, Wang Y, Maestri G. Evolution of Triangular All-Metal Aromatic Complexes from Bonding Quandaries to Powerful Catalytic Platforms. ACS ORGANIC & INORGANIC AU 2022; 2:373-385. [PMID: 36855666 PMCID: PMC9955218 DOI: 10.1021/acsorginorgau.2c00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
This manuscript describes an overview on the literature detailing the observation of trinuclear complexes that present delocalized metal-metal bonds similar to those of regular aromatics, which are formed combining main group elements. A particular emphasis is given to the structural and electronic features of aromatic clusters that are sufficiently stable to allow their isolation. In parallel to the description of their key bonding properties, the work presents reported catalytic applications of these complexes, which already span from elaborated C-C-forming cascades to highly efficient cross-coupling methods. These examples present peculiar aspects of the unique reactivity exerted by all-metal aromatic complexes, which can often be superior to their established, popular mononuclear peers in terms of chemoselectivity and chemical robustness.
Collapse
Affiliation(s)
- Franca Bigi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy,IMEM-CNR, Parco Area
delle Scienze 37/A, 43124 Parma, Italy
| | - Daniele Cauzzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Della Ca’
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Max Malacria
- Faculty
of Science and Engineering, IPCM, UMR CNRS 8232, Sorbonne Université, 4 place Jussieu, Paris 75252 Cedex 05, France
| | - Raimondo Maggi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Elena Motti
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Yanlan Wang
- Department
of Chemistry and Chemical Engineering, Liaocheng
University, 252059 Liaocheng, China
| | - Giovanni Maestri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy,
| |
Collapse
|
9
|
Wang X, Sun L, Wang M, Maestri G, Malacria M, Liu X, Wang Y, Wu L. C‐I Selective Sonogashira and Heck Coupling Reactions Catalyzed by Aromatic Triangular Tri‐palladium. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoshuang Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Lei Sun
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Miaomiao Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma deparment of chemistry, life sciences and environmental sustainability ITALY
| | - Max Malacria
- CNRS: Centre National de la Recherche Scientifique ICSN FRANCE
| | - Xiang Liu
- China Three Gorges University college of materials and chemical engineering CHINA
| | - Yanlan Wang
- Liaocheng University Department of chemistry and chemical engineering 1,Hunan Road, Liaocheng City, Shandong Province, China 252059 Liaocheng CHINA
| | - Lingang Wu
- Liaocheng University department of chemistry and chemical engineering CHINA
| |
Collapse
|