1
|
Sabbioni E, Szabó R, Siri P, Cappelletti D, Lente G, Bibbona E. Final nanoparticle size distribution under unusual parameter regimes. J Chem Phys 2024; 161:014111. [PMID: 38953442 DOI: 10.1063/5.0210992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
We explore the large-scale behavior of a stochastic model for nanoparticle growth in an unusual parameter regime. This model encompasses two types of reactions: nucleation, where n monomers aggregate to form a nanoparticle, and growth, where a nanoparticle increases its size by consuming a monomer. Reverse reactions are disregarded. We delve into a previously unexplored parameter regime. Specifically, we consider a scenario where the growth rate of the first newly formed particle is of the same order of magnitude as the nucleation rate, in contrast to the classical scenario where, in the initial stage, nucleation dominates over growth. In this regime, we investigate the final size distribution as the initial number of monomers tends to infinity through extensive simulation studies utilizing state-of-the-art stochastic simulation methods with an efficient implementation and supported by high-performance computing infrastructure. We observe the emergence of a deterministic limit for the particle's final size density. To scale up the initial number of monomers to approximate the magnitudes encountered in real experiments, we introduce a novel approximation process aimed at faster simulation. Remarkably, this approximating process yields a final size distribution that becomes very close to that of the original process when the available monomers approach infinity. Simulations of the approximating process further support the conjecture of the emergence of a deterministic limit.
Collapse
Affiliation(s)
- Elena Sabbioni
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Rebeka Szabó
- Department of Physical Chemistry and Materials Science, University of Pécs, Pécs, Hungary
| | - Paola Siri
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | | | - Gábor Lente
- Department of Physical Chemistry and Materials Science, University of Pécs, Pécs, Hungary
| | - Enrico Bibbona
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| |
Collapse
|
2
|
Sanz-Navarro S, Ballesteros-Soberanas J, Martínez-Castelló A, Doménech-Carbó A, Hernández-Garrido JC, Cerón-Carrasco JP, Mon M, Leyva-Pérez A. Evidence for Ruthenium(II) Peralkene Complexes as Catalytic Species during the Isomerization of Terminal Alkenes in Solution. Inorg Chem 2023. [PMID: 37393543 DOI: 10.1021/acs.inorgchem.3c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The isomerization (chain-walking) reaction of terminal to internal alkenes is catalyzed by part-per-million amounts of practically any Ru source when the reaction is carried out with a neat terminal alkene. Here, we provide evidence that the soluble starting Ru sources evolve to catalytically active peralkene Ru(II) species under reaction conditions. These species may also explain the isomerization products found during other Ru-catalyzed alkene processes, i.e., alkene metathesis reactions. A Finke-Watzky mechanism for catalyst formation is consistent with the evidence obtained.
Collapse
Affiliation(s)
- Sergio Sanz-Navarro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Jordi Ballesteros-Soberanas
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | | | - Antonio Doménech-Carbó
- Departament de Química Analítica, Universitat de Valencia, Dr Moliner, 50, Burjassot, 46100 Valencia, Spain
| | - Juan Carlos Hernández-Garrido
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real, Puerto Real 11510, Cádiz, Spain
| | - Jose Pedro Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, Base Aérea de San Javier, C/Coronel López Peña S/N, Santiago de La Ribera, 30720 Murcia, Spain
| | - Marta Mon
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Morimoto K, Kitagawa D, Bardeen CJ, Kobatake S. Cooperative Photochemical Reaction Kinetics in Organic Molecular Crystals. Chemistry 2023; 29:e202203291. [PMID: 36414545 DOI: 10.1002/chem.202203291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Photoreactive molecular crystals have been intensively investigated as next-generation functional materials. Changes in physicochemical properties are usually interpreted in terms of static pre- and post-reaction molecular structures and packings determined by X-ray structure analysis. However, to elucidate the dynamic properties, it is necessary to understand the dynamic nature of photochemical kinetics in crystals. Reaction dynamics in the crystal phase can be dramatically different from those in dilute solution because the local molecular environment evolves as the surrounding reactant molecules are transformed into products. In this Review article, we summarize multiple examples of photochemical reactions in the crystalline phase that do not follow classical kinetic behavior. We also discuss different theoretical methods that can be used to describe this behavior. This Review article should help provide a foundation for future workers to understand and analyze photochemical reaction kinetics in crystals.
Collapse
Affiliation(s)
- Kohei Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daichi Kitagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA 92521, USA
| | - Seiya Kobatake
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
4
|
Tuttle RR, Finke RG, Reynolds MM. Cu II Lewis Acid, Proton-Coupled Electron Transfer Mechanism for Cu-Metal–Organic Framework-Catalyzed NO Release from S-Nitrosoglutathione. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|