1
|
Karlsson E, Rabayah R, Liu T, Moya Cruz E, Kozlowski MC, Karsili TNV, Lester MI. Electronic Spectroscopy of the Halogenated Criegee Intermediate, ClCHOO: Experiment and Theory. J Phys Chem A 2024; 128:10949-10956. [PMID: 39666892 DOI: 10.1021/acs.jpca.4c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A chlorine-substituted Criegee intermediate, ClCHOO, is photolytically generated using a diiodo precursor, detected by VUV photoionization at 118 nm, and spectroscopically characterized via ultraviolet-visible (UV-vis)-induced depletion of m/z = 80 under jet cooled conditions. UV-vis excitation resonant with a π* ← π transition yields a significant ground state depletion, indicating a strong electronic transition and rapid photodissociation. The broad absorption spectrum peaks at 350 nm and is attributed to contributions from both syn (∼70%) and anti (∼30%) conformers of ClCHOO based on spectral simulations using a nuclear ensemble method. Electronic structure theory shows significant differences in the vertical excitation energies of the two conformers (330 and 371 nm, respectively) as well as their relative stabilities in the ground and excited electronic states associated with the π* ← π transition. Natural bond orbital analysis reveals significant and nonintuitive nonbonding contributions to the relative stabilities of the syn and anti conformers.
Collapse
Affiliation(s)
- Elizabeth Karlsson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rawan Rabayah
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emmanuel Moya Cruz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana, Lafayette, Louisiana 70504, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
2
|
Kao TY, Chung CA, Lee YP. Rate Coefficient and Branching Ratio for the Formation of Criegee Intermediate S yn-/A nti-CH 3CHOO from CH 3CHI + O 2 and the Self-Reaction of S yn-/A nti-CH 3CHOO Determined with Simultaneous IR/UV Probes. J Phys Chem A 2024; 128:9453-9461. [PMID: 39427260 PMCID: PMC11533191 DOI: 10.1021/acs.jpca.4c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
A flow reactor coupled with a light-emitting diode at 286 nm, an infrared quantum-cascade laser near 11 μm, and an ultraviolet laser at 335 nm was implemented to probe the precursor CH3CHI2, syn-CH3CHOO, and anti/syn-CH3CHOO, respectively, in the reaction of CH3CHI + O2. The branching between syn- and anti-CH3CHOO was determined to be ≈80:20 from two methods. The concentration temporal profiles of anti-CH3CHOO, derived on comparison of infrared and ultraviolet profiles, yielded the rate coefficient for the self-reaction of anti-CH3CHOO, kself anti = (6 ± 2) × 10-10 cm3 molecule-1 s-1, ∼4 times the corresponding value, kself syn = (1.4 ± 0.3) × 10-10 cm3 molecule-1 s-1, for syn-CH3CHOO; the rate coefficient for the cross-reaction between syn-CH3CHOO and anti-CH3CHOO was estimated to be (2.1 ± 0.6) × 10-10 cm3 molecule-1 s-1. With determined concentrations of syn-CH3CHOO and self-reaction rate coefficients, the rate coefficient for the formation of CH3CHOO from CH3CHI + O2 was determined to be kform = (3.8 ± 0.7) × 10-12 cm3 molecule-1 s-1 at 298 K, ∼45% of previous reports.
Collapse
Affiliation(s)
- Tang-Yu Kao
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chen-An Chung
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Zou M, Hassan Y, Roy TK, McCoy AB, Lester MI. Infrared spectroscopy of the syn-methyl-substituted Criegee intermediate: A combined experimental and theoretical study. J Chem Phys 2024; 160:204309. [PMID: 38818894 DOI: 10.1063/5.0210122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
An IR-vacuum ultraviolet (VUV) ion-dip spectroscopy method is utilized to examine the IR spectrum of acetaldehyde oxide (CH3CHOO) in the overtone CH stretch (2νCH) spectral region. IR activation creates a depletion of the ground state population that reduces the VUV photoionization signal on the parent mass channel. IR activation of the more stable and populated syn-CH3CHOO conformer results in rapid unimolecular decay to OH + vinoxy products and makes the most significant contribution to the observed spectrum. The resultant IR-VUV ion-dip spectrum of CH3CHOO is similar to that obtained previously for syn-CH3CHOO using IR action spectroscopy with UV laser-induced fluorescence detection of OH products. The prominent IR features at 5984 and 6081 cm-1 are also observed using UV + VUV photoionization of OH products. Complementary theoretical calculations utilizing a general implementation of second-order vibrational perturbation theory provide new insights on the vibrational transitions that give rise to the experimental spectrum in the overtone CH stretch region. The introduction of physically motivated small shifts of the harmonic frequencies yields remarkably improved agreement between experiment and theory in the overtone CH stretch region. The prominent features are assigned as highly mixed states with contributions from two quanta of CH stretch and/or a combination of CH stretch with an overtone in mode 4. The generality of this approach is demonstrated by applying it to three different levels of electronic structure theory/basis sets, all of which provide spectra that are virtually indistinguishable despite showing large deviations prior to introducing the shifts to the harmonic frequencies.
Collapse
Affiliation(s)
- Meijun Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yarra Hassan
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
4
|
Orr-Ewing AJ, Osborn DL. Collection on the Spectroscopy, Structure, and Reactivity of Stabilized Criegee Intermediates. J Phys Chem A 2024; 128:2909-2911. [PMID: 38632956 DOI: 10.1021/acs.jpca.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - David L Osborn
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Hakala J, Donahue NM. Carbonyl Oxide Stabilization from Trans Alkene and Terpene Ozonolysis. J Phys Chem A 2023; 127:8530-8543. [PMID: 37792960 PMCID: PMC10591513 DOI: 10.1021/acs.jpca.3c03650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Indexed: 10/06/2023]
Abstract
The pressure dependence of carbonyl oxide (Criegee intermediate) stabilization can be measured via H2SO4 detection using chemical ionization mass spectrometry. By selectively scavenging OH radicals in a flow reactor containing an alkene, O3, and SO2, we measure an H2SO4 ratio related to the Criegee intermediate stabilization, and by performing experiments at multiple pressures, we constrain the pressure dependence of the stabilization. Here, we present results from a set of monoterpenes as well as isoprene, along with previously published results from tetramethylethylene and a sequence of symmetrical trans alkenes. We are able to reproduce the observations with a physically sensible set of parameters related to standard pressure falloff functions, providing both a consistent picture of the reaction dynamics and a method to describe the pressure stabilization following ozonolysis of all alkenes under a wide range of atmospheric conditions.
Collapse
Affiliation(s)
- Jani Hakala
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Institute
for Atmospheric and Earth System Research, Department of Physics, University of Helsinki, P.O. Box 64, Helsinki, 00014, Finland
| | - Neil M. Donahue
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Chen Y, Zhong L, Liu S, Jiang H, Shi J, Jin Y, Yang X, Dong W. The simplest Criegee intermediate CH 2OO reaction with dimethylamine and trimethylamine: kinetics and atmospheric implications. Phys Chem Chem Phys 2023; 25:23187-23196. [PMID: 37605796 DOI: 10.1039/d3cp02948d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
We have used the OH laser-induced fluorescence (LIF) method to measure the kinetics of the simplest Criegee intermediate (CH2OO) reacting with two abundant amines in the atmosphere: dimethylamine ((CH3)2NH) and trimethylamine ((CH3)3N). Our experiments were conducted under pseudo-first-order approximation conditions. The rate coefficients we report are (2.15 ± 0.28) × 10-11 cm3 molecule-1 s-1 for (CH3)2NH at 298 K and 10 Torr, and (1.56 ± 0.23) × 10-12 cm3 molecule-1 s-1 for (CH3)3N at 298 K and 25 Torr with Ar as the bath gas. Both reactions exhibit a negative temperature dependence. The activation energy and pre-exponential factors derived from the Arrhenius equation were (-2.03 ± 0.26) kcal mol-1 and (6.89 ± 0.90) × 10-13 cm3 molecule-1 s-1 for (CH3)2NH, and (-1.60 ± 0.24) kcal mol-1 and (1.06 ± 0.16) × 10-13 cm3 molecule-1 s-1 for (CH3)3N. We propose that the electronegativity of the atom in the co-reactant attached to the C atom of CH2OO, in addition to the dissociation energy of the fragile covalent bonds with H atoms (H-X bond), plays an important role in the 1,2-insertion reactions. Under certain circumstances, the title reactions can contribute to the sink of amines and Criegee intermediates and to the formation of secondary organic aerosol (SOA).
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Licheng Zhong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Siyue Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Chinese Ministry of Education, School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Haotian Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayu Shi
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Physics, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yuqi Jin
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
7
|
Su ZS, Lee YP. Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH 3CHOO and HCl. J Phys Chem A 2023; 127:6902-6915. [PMID: 37561815 DOI: 10.1021/acs.jpca.3c03527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The rapid reactions between Criegee intermediates and hydrogen halides play important roles in atmospheric chemistry, particularly in the polluted urban atmosphere. Employing a step-scan Fourier transform spectrometer, we recorded infrared absorption spectra of transient species and end products of the reaction CH3CHOO + HCl in a flowing mixture of CH3CHI2/HCl/O2/N2 irradiated at 308 nm. Bands at 1453.6, 1383.7, 1357.9, 1323.8, 1271.8, 1146.2, 1098.2, 1017.5, 931.5, and 847.0 cm-1 were observed and assigned to the anti-conformer of chloroethyl hydroperoxide (anti-CEHP or anti-CH3CHClOOH). In addition, absorption bands of H2O and acetyl chloride [CH3C(O)Cl, at 1819.1 cm-1] were observed; some of them were produced from the secondary reactions of CH3CHClO + O2 → CH3C(O)Cl + HO2 and OH + HCl → H2O + Cl, according to temporal profiles of H2O and CH3C(O)Cl. These secondary reactions are conceivable because the nascent formation of CH3CHClO + OH via decomposition of internally excited CEHP was predicted by theory, and both HCl and O2 are major species in the system. The nascent formation of CH3CHClO + OH appears to be more important than that of CH3C(O)Cl + H2O, consistent with theoretical predictions. By adding methanol to deplete some anti-CH3CHOO, we observed only anti-CEHP with a reduced proportion; this observation indicates that the conversion from syn-CEHP, expected to be produced from syn-CH3CHOO + HCl, to anti-CEHP is facile. We also estimated the overall rate coefficient of the reaction syn-/anti-CH3CHOO + HCl to be kHCl = (2.7 ± 1.0) × 10-10 cm3 molecule-1 s-1 at ∼70 Torr and 298 K; this rate coefficient is about six times the only literature value kHClsyn = (4.77 ± 0.95) × 10-11 cm3 molecule-1 s-1 reported for syn-CH3CHOO + HCl by Liu et al., indicating that anti-CH3CHOO reacts with HCl much more rapidly than syn-CH3CHOO.
Collapse
Affiliation(s)
- Zih-Syuan Su
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|