1
|
Luo L, Dang M, Song X, Zhao Q, Yang S, Hou X, Liu S, Ren Y. Theoretical investigation of naphthodithiophene diimide derivatives as fluorescent sensors for 2,4,6-trinitrophenol detection. J Mol Model 2025; 31:148. [PMID: 40299097 DOI: 10.1007/s00894-025-06366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
CONTEXT This study explored the geometry, aromaticity, electrostatic potential, and fluorescence sensing capability of N,N'-dimethyl naphthodithiophene diimide (C1-NDTI-S) and its derivatives (C1-NDFI-O and C1-NDPI-N), where thiophene rings were substituted with furan and pyrrole, respectively. Theoretical calculations revealed that C1-NDTI-S had the most negative adsorption energy for 2,4,6-trinitrophenol (TNP), and its electronic absorption spectrum and fluorescence spectrum decreased considerably upon TNP adsorption. Through FMO, hole-electron, independent gradient model, and energy decomposition analysis, it was revealed that the essence of fluorescence quenching is the intermolecular weak π-π interaction driving photo-induced electron transfer. Furthermore, C1-NDFI-O and C1-NDPI-N generated by modifying the structure of C1-NDTI-S have the potential to serve as more efficient fluorescent sensors for TNP detection. The fluorescence recovery times confirmed the suitability of the three compounds as fluorescence probes. METHODS In this study, the Gaussian 09 software package at B3LYP-D3(BJ)/6-311 + + G** level was applied to optimize the structure, energy, and fluorescence recovery time. Multiwfn combined with VMD software package was used to analyze the aromaticity of compounds using LOL-π and HOMA, with a focus on the differences in aromaticity after thiophene was substituted with different rings. Using AMBER force field for energy decomposition analysis based on force field (EDA-FF), the weak intermolecular interaction components are decomposed. The independent gradient model analysis based on Hirshfeld partition analysis clearly demonstrates the π-π interactions between molecules, with the δginter parameter set to 0.005 a.u. Electron absorption spectroscopy, charge-transfer spectra spectroscopy, molecular interactions, and hole electron interactions were all completed with the help of Multifwn software.
Collapse
Affiliation(s)
- Leixing Luo
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Shuo Yang
- China Railway Shanghai Group Co., Ltd. Shanghai Large Scale Road Maintenance Machinery Operation and Maintenance Section, Jing'an, Shanghai, 200071, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
2
|
Hidalgo-Rosa Y, Echevarria-Valdés Y, Saavedra-Torres M, Páez-Hernández D, Schott E, Zarate X. Quantum chemical elucidation of the luminescence mechanism in a europium(III) co-doped UiO-66 chemosensor selective to mercury(II). Dalton Trans 2025; 54:6623-6636. [PMID: 40152629 DOI: 10.1039/d4dt03285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Lanthanide(III) ions can be incorporated into metal-organic frameworks (MOFs) to form Ln@MOFs through post-synthetic procedures. This makes the MOFs efficient luminescent chemical sensors for detecting trace amounts of heavy metals. In this report, a quantum chemical theoretical protocol has been carried out to elucidate the detection principle of the turn-off luminescence mechanism in a Eu@UiO-66(DPA)-type MOF selective to Hg2+ ions. UiO-66(DPA) is an iso-reticular MOF of UiO-66 constructed from the Zr6-cluster [Zr6(μ3-O)4(μ3-OH)4]12+ and the ligands 1,4-benzenedicarboxylate (BDC) and 2,6-pyridinedicarboxylate (DPA) as linkers. The sensitization and energy transfer (ET) in UiO-66(DPA) doped with Eu3+ were analyzed using multireference ab initio CASSCF/NEVPT2 methods and time-dependent density functional theory (TD-DFT). The cluster model used in the calculations comprises the Z6-cluster/BDC/DPA fragments with the DPA ligand coordinating to Eu3+ or Hg2+ ions. The proposed sensitization pathway involves intersystem crossing from S1(DPA) to T1(DPA), a plausible subsequent energy transfer from T1(DPA) to the 5D1 state of Eu3+, and then vibrational relaxation to the emissive 5D0 state. These results also suggest that the electronic states of the BDC ligand can be strengthened by the population of the T1 electronic states of the DPA antenna via ET. Periodic DFT calculations confirm the electronic state mixture of BDC and DPA linkers in the conduction bands, just above the electronic state of Eu3+ ions, which is in concordance with the proposed Eu3+ sensitization pathways. The assessed optical properties (absorption and emission) of Hg2+@UIO-66(DPA) explain the experimental behavior of this chemosensor when the Hg2+ ion replaces the Eu3+ ion and the luminescence diminishes.
Collapse
Affiliation(s)
- Yoan Hidalgo-Rosa
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile.
- Escuela de Ingeniería del Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, 8580745 Santiago, Chile
| | - Yoslainy Echevarria-Valdés
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 275, Santiago 8370146, Chile
| | - Mario Saavedra-Torres
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile.
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 275, Santiago 8370146, Chile
- Center of Applied Nanosciences (CANS), Universidad Andres Bello, Ave. República #275, 8370146 Santiago de Chile, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7820436 Santiago, Chile.
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile.
| |
Collapse
|
3
|
Song X, Hou X, Dang M, Zhao Q, Liu S, Ma Z, Ren Y. Design and preparation of a multi-responsive Cd-based fluorescent coordination polymer for smart sensing of nitrobenzene and ornidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124656. [PMID: 38880074 DOI: 10.1016/j.saa.2024.124656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The improper utilization of nitrobenzene (NB) and ornidazole (ORN) has resulted in irreversible effects on the environment. By combining experimental investigation, density functional theory (DFT) calculations, and machine learning, an effective green strategy for detecting NB and ORN in aqueous solutions can be developed. In this study, a one-dimensional Cd-based coordination polymer (Cd-HCIA-3) was designed and synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid and rigid 2,2'-bipyridine under solvothermal reaction conditions. Cd-HCIA-3 exhibits excellent fluorescence properties and stability in aqueous solutions. DFT calculations were performed to predict the fluorescence sensing performance of Cd-HCIA-3, revealing that photoinduced electron transfer is the key mechanism for inducing fluorescence quenching in the presence of NB and ORN, with weak molecular interactions promoting electron transfer. Fluorescence sensing experiments were conducted to verify the DFT results, showing that Cd-HCIA-3 can selectively detect NB and ORN in aqueous solutions with limits of detection of 7.22 × 10-8 and 1.31 × 10-7 mol/L, respectively. This study's findings provide valuable insights into the design and synthesis of fluorescent coordination polymers for target analytes.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
4
|
Song X, Hou X, Zhao Q, Ma Z, Ren Y. Fluorescence-quenching mechanisms of novel isomorphic Zn/Cd coordination polymers for selective nitrobenzene detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123729. [PMID: 38086232 DOI: 10.1016/j.saa.2023.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Nitroaromatic compounds in aqueous undermine environmental sustainability and affect human health. The development of a fluorescent sensor capable of efficiently and selectively detecting trace amounts of nitroaromatic compounds presents a considerable challenge. This study introduced Zn/Cd isomeric coordination polymers (Zn-H2CIA-1/Cd-H2CIA-2), which are synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid (5-H3CIA) and 1,10-phenanthroline (Phen). The polymers have zero-dimensional discrete crystal structure with a six-coordinated scissor-like shape. The two coordination polymers can be used as fluorescent sensors for detecting nitrobenzene (NB) and demonstrated favorable sensitivity, with detection limits of 1.95 × 10-8 and 4.66 × 10-7 mol/L, respectively. Zn-H2CIA-1 exhibited stronger fluorescence and a more sensitive response to NB compared with Cd-H2CIA-2. To elucidate their fluorescence-quenching mechanisms, we analyzed Zn-H2CIA-1 by performing DFT and TD-DFT calculations. The pore structure, density of states, excitation energy, hole-electron distribution, and orbital composition were analyzed. The suitable size of pores in Zn-H2CIA-1 is the main reason for its high NB selectivity. Moreover, intermolecular π-π stacking interactions result in an orbital overlap between Zn-H2CIA-1 and NB, enabling the transfer of electrons from Zn-H2CIA-1 to NB. This electron transfer is identified as the fundamental cause of fluorescence quenching in Zn-H2CIA-1.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
5
|
Diaz-Uribe C, Rangel D, Vallejo W, Valle R, Hidago-Rosa Y, Zarate X, Schott E. Photophysical characterization of tetrahydroxyphenyl porphyrin Zn(II) and V(IV) complexes: experimental and DFT study. Biometals 2023; 36:1257-1272. [PMID: 37344742 DOI: 10.1007/s10534-023-00514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising technique for the treatment of various diseases. In this sense, the singlet oxygen quantum yield (Φ∆) is a physical-chemical property that allows to stablish the applicability of a potential photosensitizers (PS) as a drug for PDT. In the herein report, the Φ∆ of three photosensitizers was determined: metal-free tetrahydroxyphenyl porphyrin (THPP), THPP-Zn and the THPP-V metal complexes. Their biological application was also evaluated. Therefore, the in vitro study was carried out to assess their biological activity against Escherichia coli. The metal-porphyrin complexes exhibited highest activities against the bacterial strain Escherichia coli. at the highest concentration (175 μg/mL) and show better activity than the free base ligand (salts and blank solution). Results indicated a relation between Φ∆ and the inhibitory activity against Escherichia coli, thus, whereas higher is the Φ∆, higher is the inhibitory activity. The values of the Φ∆ and the inhibitory activity follows the tendency THPP-Zn > THPP > THPP-V. Furthermore, quantum chemical calculations allowed to gain deep insight into the electronic and optical properties of THPP-Zn macrocycle, which let to verify the most probable energy transfer pathway involved in the singlet oxygen generation.
Collapse
Affiliation(s)
- Carlos Diaz-Uribe
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia.
| | - Daily Rangel
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - William Vallejo
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Roger Valle
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Yoan Hidago-Rosa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia, Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
- Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia, 1509, Santiago, Providencia, Chile
| | - Ximena Zarate
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile.
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia, Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Millennium Nucleus in Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile.
| |
Collapse
|
6
|
Ma Y, Wang S, Guo J, Wang Z, Tang H, Wang K. Sensitive fluorescent detection of phosmet and chlortetracycline in animal-derived food samples based on a water-stable Cd(II) chain-based zwitterionic metal-organic framework. Anal Chim Acta 2023; 1280:341850. [PMID: 37858547 DOI: 10.1016/j.aca.2023.341850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
The residues of pesticides and antibiotics have always been a major concern in agriculture and food safety. In order to provide a new method for the rapid detection of organophosphorus pesticides and antibiotics, a novel Cd(II) chain-based zwitterionic metal-organic framework MOF 1 with high sensitivity fluorescence sensing performance was successfully synthesized. A series of researches showed that the water- and pH-stable bifunctional MOF 1 has a great ability to detect phosmet (PSM) and chlortetracycline (CTC) in water through fluorescence quenching effect, with high detection sensitivity, low detection limits (0.0124 μM and 0.0131 μM), short response time (40 s) and reusability. Practical application results revealed that MOF 1 could detect PSM and CTC in milk, beef, chicken and egg samples, with satisfactory recoveries (95.2%-103.7%). As a novel fluorescence probe, MOF 1, is known the first case that can detect PSM in animal-derived samples, and the first dual-function material capable of detecting PSM and CTC. Mechanism studies displayed that competitive absorption and photoinduced electron transfer clearly authenticate the high quenching performance of the material.
Collapse
Affiliation(s)
- Yulu Ma
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China.
| | - Shiyou Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Jinrong Guo
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Zhengliang Wang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Huaijun Tang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Kaimin Wang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650504, PR China.
| |
Collapse
|
7
|
Ren Y, Ma Z, Gao T, Liang Y. Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide-Organic Complexes. Molecules 2023; 28:molecules28114481. [PMID: 37298958 DOI: 10.3390/molecules28114481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Water environment pollution is becoming an increasingly serious issue due to industrial pollutants with the rapid development of modern industry. Among many pollutants, the toxic and explosive nitroaromatics are used extensively in the chemical industry, resulting in environmental pollution of soil and groundwater. Therefore, the detection of nitroaromatics is of great significance to environmental monitoring, citizen life and homeland security. Lanthanide-organic complexes with controllable structural features and excellent optical performance have been rationally designed and successfully prepared and used as lanthanide-based sensors for the detection of nitroaromatics. This review will focus on crystalline luminescent lanthanide-organic sensing materials with different dimensional structures, including the 0D discrete structure, 1D and 2D coordination polymers and the 3D framework. Large numbers of studies have shown that several nitroaromatics could be detected by crystalline lanthanide-organic-complex-based sensors, for instance, nitrobenzene (NB), nitrophenol (4-NP or 2-NP), trinitrophenol (TNP) and so on. The various fluorescence detection mechanisms were summarized and sorted out in the review, which might help researchers or readers to comprehensively understand the mechanism of the fluorescence detection of nitroaromatics and provide a theoretical basis for the rational design of new crystalline lanthanide-organic complex-based sensors.
Collapse
Affiliation(s)
- Yixia Ren
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Zhihu Ma
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Ting Gao
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Fan W, Liu X, Cheng Y, Chang S, Wang L, Liu Y, Liu P, Zheng LY, Cao QE. Novel Lanthanide-Based Metal-Organic Framework Isomer as a Double Ratiometric Fluorescent Probe for Vanillymandelic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22590-22601. [PMID: 37098047 DOI: 10.1021/acsami.3c03662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The concentration of vanillymandelic acid (VMA) in urine is closely related with pheochromocytoma diagnosis. Thus, it is essential to develop more accurate and convenient fluorescence sensing strategies toward VMA. Until now, the design of double ratiometric detection methods for VMA was still in the unexplored stage. In this work, novel Ln3+-based metal-organic frameworks (QBA-Eu and QBA-Gd0.875Eu0.125) possessing dual emission peaks was fabricated successfully, which served as isomers of YNU-1 and exhibited more excellent water stability in fluorescence and structure than the ones of YNU-1. The formation of the complex between QBA ligands and VMA molecules via hydrogen bonds within QBA-Eu frameworks produced a new emission band centered at 450 nm and resulted in the decline of monomer emission intensity for QBA at 390 nm. Owing to the reduced energy gap [ΔE (S1 - T1)], the antenna effect was hampered and luminescence of Eu3+ ions also decreased. The developed double ratiometric (I615nm/I475nm, I390nm/I475nm) fluorescence sensors based on QBA-Eu and QBA-Gd0.875Eu0.125 possessed the advantages of fast response (4 min), low detection limits (0.58 and 0.51; 0.22 and 0.31 μM), and wide linear ranges (2-100 and 2-80 μM), which met the requirements of pheochromocytoma diagnosis. We also applied them to determine VMA in an artificial urine sample and diluted human urine sample and obtained satisfactory results. They will become prospective fluorescence sensing platforms for VMA.
Collapse
Affiliation(s)
- Wenwen Fan
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Xiaolan Liu
- Drug Control College of Yunnan Police Officer Academy, No. 249 North Jiaochang Road, Kunming 650091, P. R. China
| | - Yi Cheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Shasha Chang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Longjie Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Yanxiong Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Peng Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Li-Yan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Qiu-E Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| |
Collapse
|