1
|
Bocanegra EL, Rana A, McCoy AB, Johnson MA. Isomer-Specific, Cryogenic Ion Vibrational Spectroscopy Investigation of D 2- and N 2-Tagged, Protonated Formic Acid Complexes Using Two-Color, IR-IR Photobleaching. J Phys Chem Lett 2024; 15:10944-10949. [PMID: 39451162 DOI: 10.1021/acs.jpclett.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Here we analyze cryogenic ion vibrational spectra of tagged protonated formic acid (PFA) with electronic structure and anharmonic vibrational calculations to establish the isomers generated by electrospray ionization (ESI) followed by buffer gas cooling to ∼25 K. Two isomers are identified (the trans form (E,Z) and the cis form (E,E)) and generated in comparable abundance despite the fact that the calculated E,E structure lies 6.40 kJ mol-1 above the E,Z form. A large (∼60 kJ mol-1) barrier separates them such that the E,E form can be kinetically trapped upon cooling in the ion trap. The anticooperativity between the H-bonds of the OH groups is explored by measuring the shift in the D2-bound OH fundamental when a second D2 is attached. Both isomers are observed in the N2-tagged counterparts, displaying the expected red-shifted OH bands. These results indicate that ESI generates both isomers and both must be considered when analyzing cluster spectra based on the PFA core ion.
Collapse
Affiliation(s)
- Erica L Bocanegra
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Abhijit Rana
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Daniely A, Wannenmacher A, Levy N, Sheffer O, Joseph E, Kostko O, Ahmed M, Stein T. A Vacuum Ultraviolet Photoionization Mass Spectrometry and Density Functional Calculation Study of Formic Acid-Water Clusters. J Phys Chem A 2024. [PMID: 39046939 DOI: 10.1021/acs.jpca.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The interaction between formic acid (FA) and water (W) holds significant importance in various chemical processes. Our study combines vacuum-ultraviolet photoionization mass spectrometry with density functional calculations to investigate formic acid water clusters generated in supersonic molecular beams. The mass spectra obtained reveal the formation of protonated clusters as the major product. Enhanced intensities are observed in the mass spectra for a number of clusters holding the following composition, FA1W5H+, FA2W4H+, FA3W3H+, FA4W2H+, FA5W1H+ and FA6W2H+ compared to their neighbors with one less or one more water component. Our calculations shed light on these potentially stable structures, highlighting cyclic arrangements with molecules enclosed within the ring as the most stable structures, and demonstrate a decrease in the stability upon the addition of a water molecule. Comparing experimental appearance energies with calculated ionization energies suggests that fragmentation can occur from clusters of various sizes.
Collapse
Affiliation(s)
- Amit Daniely
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Anna Wannenmacher
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nevo Levy
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Omri Sheffer
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Edwin Joseph
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tamar Stein
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| |
Collapse
|
3
|
Spencer RJ, Zhanserkeev AA, Yang EL, Steele RP. The Near-Sightedness of Many-Body Interactions in Anharmonic Vibrational Couplings. J Am Chem Soc 2024; 146:15376-15392. [PMID: 38771156 DOI: 10.1021/jacs.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Couplings between vibrational motions are driven by electronic interactions, and these couplings carry special significance in vibrational energy transfer, multidimensional spectroscopy experiments, and simulations of vibrational spectra. In this investigation, the many-body contributions to these couplings are analyzed computationally in the context of clathrate-like alkali metal cation hydrates, including Cs+(H2O)20, Rb+(H2O)20, and K+(H2O)20, using both analytic and quantum-chemistry potential energy surfaces. Although the harmonic spectra and one-dimensional anharmonic spectra depend strongly on these many-body interactions, the mode-pair couplings were, perhaps surprisingly, found to be dominated by one-body effects, even in cases of couplings to low-frequency modes that involved the motion of multiple water molecules. The origin of this effect was traced mainly to geometric distortion within water monomers and cancellation of many-body effects in differential couplings, and the effect was also shown to be agnostic to the identity of the ion. These outcomes provide new understanding of vibrational couplings and suggest the possibility of improved computational methods for the simulation of infrared and Raman spectra.
Collapse
Affiliation(s)
- Ryan J Spencer
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Gutiérrez-Quintanilla A, Moge B, Compagnon I, Noble JA. Vibrational and electronic spectra of protonated vanillin: exploring protonation sites and isomerisation. Phys Chem Chem Phys 2024; 26:15358-15368. [PMID: 38767194 DOI: 10.1039/d3cp05573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Photofragmentation spectra of protonated vanillin produced under electrospray ionisation (ESI) conditions have been recorded in the 3000-3700 cm-1 (vibrational) and 225-460 nm (electronic) ranges, using room temperature IRMPD (infrared multiphoton dissociation) and cryogenic UVPD (ultraviolet photodissociation) spectroscopies, respectively. The cold (∼50 K) electronic UVPD spectrum exhibits very well resolved vibrational structure for the S1 ← S0 and S3 ← S0 transitions, suggesting long excited state dynamics, similar to its simplest analogue, protonated benzaldehyde. The experimental data were combined with theoretical calculations to determine the protonation site and configurational isomer observed in the experiments.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Quintanilla
- CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille, France.
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Baptiste Moge
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Isabelle Compagnon
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jennifer A Noble
- CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille, France.
| |
Collapse
|
5
|
Mandal I, Karimova NV, Zakai I, Gerber RB. Formation of Chlorine in the Atmosphere by Reaction of Hypochlorous Acid with Seawater. J Phys Chem Lett 2024; 15:432-438. [PMID: 38189241 PMCID: PMC11139381 DOI: 10.1021/acs.jpclett.3c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
The highly reactive dihalogens play a significant role in the oxidative chemistry of the troposphere. One of the main reservoirs of these halogens is hypohalous acids, HOX, which produce dihalogens in the presence of halides (Y-), where X, Y = Cl, Br, I. These reactions occur in and on aerosol particles and seawater surfaces and have been studied experimentally and by field observations. However, the mechanisms of these atmospheric reactions are still unknown. Here, we establish the atomistic mechanism of HOCl + Cl- → Cl2 + OH- at the surface of the water slab by performing ab initio molecular dynamics (AIMD) simulations. Main findings are (1) This reaction proceeds by halogen-bonded complexes of (HOCl)···(Cl-)aq surrounded with the neighboring water molecules. (2) The halogen bonded (HOCl)···(Cl-)aq complexes undergo charge transfer from Cl- to OH- to form transient Cl2 at neutral pH. (3) The addition of a proton to one proximal water greatly facilitates the Cl2 formation, which explains the enhanced rate at low pH.
Collapse
Affiliation(s)
- Imon Mandal
- The
Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Natalia V. Karimova
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Itai Zakai
- The
Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - R. Benny Gerber
- The
Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|