1
|
Nasibullin RT, Dimitrova M, Valiev RR, Sundholm D. Orbital contributions to magnetically induced current densities using gauge-including atomic orbitals. Chem Sci 2025:d5sc00627a. [PMID: 40206555 PMCID: PMC11976446 DOI: 10.1039/d5sc00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
We have developed a method to calculate orbital contributions to magnetically induced current density (MICD) susceptibilities in molecules using gauge-including atomic orbitals (GIAO). The methods implemented in the GIMIC program have been used for analyzing orbital contributions to magnetically induced ring-current (MIRC) strengths. We have studied five aromatic, one nonaromatic, and four antiaromatic molecules. We show here that the contributions to the MIRC strength of all orbitals belonging to a given irreducible representation of the molecular point group in the presence of an external magnetic field are divergence free, whereas the MICD susceptibility of the individual orbitals are generally not divergence free. The largest contribution to the MIRC strength of antiaromatic molecules originates from the transition between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), whereas aromatic molecules have significant contributions involving many occupied orbitals. The MIRC contributions of σ orbitals are significant for planar molecules with a strained molecular structure.
Collapse
Affiliation(s)
- Rinat T Nasibullin
- Department of Chemistry, Faculty of Science, University of Helsinki P. O. Box 55 (A. I. Virtanens plats 1) FIN-00014 Finland
| | - Maria Dimitrova
- Department of Chemistry, Faculty of Science, University of Helsinki P. O. Box 55 (A. I. Virtanens plats 1) FIN-00014 Finland
| | - Rashid R Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki P. O. Box 55 (A. I. Virtanens plats 1) FIN-00014 Finland
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki P. O. Box 55 (A. I. Virtanens plats 1) FIN-00014 Finland
| |
Collapse
|
2
|
Ketzel A, Li X, Kaupp M, Sun H, Schattenberg CJ. Benchmark of Density Functional Theory in the Prediction of 13C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation. J Chem Theory Comput 2025; 21:871-885. [PMID: 39761482 PMCID: PMC11780741 DOI: 10.1021/acs.jctc.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set. Additionally, we investigate the representation of the DFT-predicted shielding tensors, such as the eigenvalues and eigenvectors. Moreover, we evaluated how various DFT methods influence the discrimination of possible relative configurations using recently published ΔΔRCSA data for a set of structurally diverse natural products. Our findings demonstrate that accurate interpretation of RCSAs for configurational and conformational analysis is possible with semilocal DFT methods, which also reduce computational demands compared to hybrid functionals such as the commonly used B3LYP.
Collapse
Affiliation(s)
- Anton
Florian Ketzel
- Institut
für Chemie, Strukturelle Chemische Biologie und Cheminformatik, Technische Universität Berlin, Berlin 10623, Germany
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Xiaolu Li
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Medical Sciences, The Second Hospital
of Shandong University, 250033 Jinan, China
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Han Sun
- Institut
für Chemie, Strukturelle Chemische Biologie und Cheminformatik, Technische Universität Berlin, Berlin 10623, Germany
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Caspar Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| |
Collapse
|
3
|
Holzer C, Franzke YJ. A General and Transferable Local Hybrid Functional for Electronic Structure Theory and Many-Fermion Approaches. J Chem Theory Comput 2025; 21:202-217. [PMID: 39704224 DOI: 10.1021/acs.jctc.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Density functional theory has become the workhorse of quantum physics, chemistry, and materials science. Within these fields, a broad range of applications needs to be covered. These applications range from solids to molecular systems, from organic to inorganic chemistry, or even from electrons to other Fermions, such as protons or muons. This is emphasized by the plethora of density functional approximations that have been developed for various cases. In this work, two new local hybrid exchange-correlation density functionals are constructed from first-principles, promoting generality and transferability. We show that constraint satisfaction can be achieved even for admixtures with full exact exchange, without sacrificing accuracy. The performance of the new functionals CHYF-PBE and CHYF-B95 is assessed for thermochemical properties, excitation energies, Mössbauer isomer shifts, NMR spin-spin coupling constants, NMR shieldings and shifts, magnetizabilities, and EPR hyperfine coupling constants. Here, the new density functional shows excellent performance throughout all tests and is numerically robust only requiring small grids for converged results. Additionally, both functionals can easily be generalized to arbitrary Fermions as shown for electron-proton correlation energies. Therefore, we outline that density functionals generated in this way are general purpose tools for quantum mechanical studies.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| |
Collapse
|
4
|
Kaupp M, Wodyński A, Arbuznikov AV, Fürst S, Schattenberg CJ. Toward the Next Generation of Density Functionals: Escaping the Zero-Sum Game by Using the Exact-Exchange Energy Density. Acc Chem Res 2024; 57:1815-1826. [PMID: 38905497 PMCID: PMC11223257 DOI: 10.1021/acs.accounts.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
ConspectusKohn-Sham density functional theory (KS DFT) is arguably the most widely applied electronic-structure method with tens of thousands of publications each year in a wide variety of fields. Its importance and usefulness can thus hardly be overstated. The central quantity that determines the accuracy of KS DFT calculations is the exchange-correlation functional. Its exact form is unknown, or better "unknowable", and therefore the derivation of ever more accurate yet efficiently applicable approximate functionals is the "holy grail" in the field. In this context, the simultaneous minimization of so-called delocalization errors and static correlation errors is the greatest challenge that needs to be overcome as we move toward more accurate yet computationally efficient methods. In many cases, an improvement on one of these two aspects (also often termed fractional-charge and fractional-spin errors, respectively) generates a deterioration in the other one. Here we report on recent notable progress in escaping this so-called "zero-sum-game" by constructing new functionals based on the exact-exchange energy density. In particular, local hybrid and range-separated local hybrid functionals are discussed that incorporate additional terms that deal with static correlation as well as with delocalization errors. Taking hints from other coordinate-space models of nondynamical and strong electron correlations (the B13 and KP16/B13 models), position-dependent functions that cover these aspects in real space have been devised and incorporated into the local-mixing functions determining the position-dependence of exact-exchange admixture of local hybrids as well as into the treatment of range separation in range-separated local hybrids. While initial functionals followed closely the B13 and KP16/B13 frameworks, meanwhile simpler real-space functions based on ratios of semilocal and exact-exchange energy densities have been found, providing a basis for relatively simple and numerically convenient functionals. Notably, the correction terms can either increase or decrease exact-exchange admixture locally in real space (and in interelectronic-distance space), leading even to regions with negative admixture in cases of particularly strong static correlations. Efficient implementations into a fast computer code (Turbomole) using seminumerical integration techniques make such local hybrid and range-separated local hybrid functionals promising new tools for complicated composite systems in many research areas, where simultaneously small delocalization errors and static correlation errors are crucial. First real-world application examples of the new functionals are provided, including stretched bonds, symmetry-breaking and hyperfine coupling in open-shell transition-metal complexes, as well as a reduction of static correlation errors in the computation of nuclear shieldings and magnetizabilities. The newest versions of range-separated local hybrids (e.g., ωLH23tdE) retain the excellent frontier-orbital energies and correct asymptotic exchange-correlation potential of the underlying ωLH22t functional while improving substantially on strong-correlation cases. The form of these functionals can be further linked to the performance of the recent impactful deep-neural-network "black-box" functional DM21, which itself may be viewed as a range-separated local hybrid.
Collapse
Affiliation(s)
- Martin Kaupp
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Alexei V. Arbuznikov
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Susanne Fürst
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Caspar J. Schattenberg
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
5
|
Grotjahn R, Furche F. Comment on: "Toward Accurate Two-Photon Absorption Spectrum Simulations: Exploring the Landscape beyond the Generalized Gradient Approximation". J Phys Chem Lett 2024; 15:6237-6240. [PMID: 38867618 DOI: 10.1021/acs.jpclett.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A recent benchmark study of two-photon absorption (2PA) strengths using meta-generalized gradient approximation (MGGA) exchange-correlation functionals by Ahmadzadeh, Li, Rinkevicius, Norman, and Zaleśny (ALRNZ24) [ J. Phys. Chem. Lett. 2024, 15, 969] misrepresents the state of the field in this area. Not only was an assessment of 2PA strengths for the exact same benchmark published previously; ALRNZ24 also uses a gauge-variant form of MGGA response theory which produces erratic behavior for certain benchmark systems. Applications of MGGAs to optical and magnetic response properties should use a gauge-invariant extension of MGGA functionals such as paramagnetic current-dependent MGGAs.
Collapse
Affiliation(s)
- Robin Grotjahn
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
6
|
Schattenberg C, Kaupp M. Implementation and First Evaluation of Strong-Correlation-Corrected Local Hybrid Functionals for the Calculation of NMR Shieldings and Shifts. J Phys Chem A 2024; 128:2253-2271. [PMID: 38456430 PMCID: PMC10961831 DOI: 10.1021/acs.jpca.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Local hybrid functionals containing strong-correlation factors (scLHs) and range-separated local hybrids (RSLHs) have been integrated into an efficient coupled-perturbed Kohn-Sham implementation for the calculation of nuclear shielding constants. Several scLHs and the ωLH22t RSLH have then been evaluated for the first time for the extended NS372 benchmark set of main-group shieldings and shifts and the TM70 benchmark of 3d transition-metal shifts. The effects of the strong-correlation corrections have been analyzed with respect to the spatial distribution of the sc-factors, which locally diminish exact-exchange admixture at certain regions in a molecule. The scLH22t, scLH23t-mBR, and scLH23t-mBR-P functionals, which contain a "damped" strong-correlation factor to retain the excellent performance of the underlying LH20t functional for weakly correlated situations, tend to make smaller corrections to shieldings and shifts than the "undamped" scLH22ta functional. While the latter functional can also deteriorate agreement with the reference data in certain weakly correlated cases, it provides overall better performance, in particular for systems where static correlation is appreciable. This pertains only to a minority of systems in the NS372 main-group test set but to many more systems in the TM70 transition-metal test set, in particular for high-oxidation-state complexes, e.g., Cr(+VI) complexes and other systems with stretched bonds. Another undamped scLH, the simpler LDA-based scLH21ct-SVWN-m, also tends to provide significant improvements in many cases. The differences between the functionals and species can be rationalized on the basis of one-dimensional plots of the strong-correlation factors, augmented by isosurface plots of the fractional orbital density (FOD). Position-dependent exact-exchange admixture is thus shown to provide substantial flexibility in treating response properties like NMR shifts for both weakly and strongly correlated systems.
Collapse
Affiliation(s)
- Caspar
Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie
(FMP), Robert-Roessle-Str.
10, 13125 Berlin, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
7
|
Wodyński A, Lauw B, Reimann M, Kaupp M. Spin-Symmetry Breaking and Hyperfine Couplings in Transition-Metal Complexes Revisited Using Density Functionals Based on the Exact-Exchange Energy Density. J Chem Theory Comput 2024; 20:2033-2048. [PMID: 38411554 PMCID: PMC10938646 DOI: 10.1021/acs.jctc.3c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
A small set of mononuclear manganese complexes evaluated previously for their Mn hyperfine couplings (HFCs) has been analyzed using density functionals based on the exact-exchange energy density─in particular, the spin symmetry breaking (SSB) found previously when using hybrid functionals. Employing various strong-correlation corrected local hybrids (scLHs) and strong-correlation corrected range-separated local hybrids (scRSLHs) with or without additional corrections to their local mixing functions (LMFs) to mitigate delocalization errors (DE), the SSB and the associated dipolar HFCs of [Mn(CN)4]2-, MnO3, [Mn(CN)4N]-, and [Mn(CN)5NO]2- (the latter with cluster embedding) have been examined. Both strong-correlation (sc)-correction and DE-correction terms help to diminish SSB and correct the dipolar HFCs. The DE corrections are more effective, and the effects of the sc corrections depend on their damping factors. Interestingly, the DE-corrections reduce valence-shell spin polarization (VSSP) and thus SSB by locally enhancing exact-exchange (EXX) admixture near the metal center and thereby diminishing spin-density delocalization onto the ligand atoms. In contrast, sc corrections diminish EXX admixture locally, mostly on specific ligand atoms. This then reduces VSSP and SSB as well. The performance of scLHs and scRSLHs for the isotropic Mn HFCs has also been analyzed, with particular attention to core-shell spin-polarization contributions. Further sc-corrected functionals, such as the KP16/B13 construction and the DM21 deep-neural-network functional, have been examined.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Bryan Lauw
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Marc Reimann
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Martin Kaupp
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| |
Collapse
|