1
|
Bubas AR, Tatosian IJ, Iacovino A, Corcovilos TA, van Stipdonk MJ. Reactions of gas-phase uranyl formate/acetate anions: reduction of carboxylate ligands to aldehydes by intra-complex hydride attack. Phys Chem Chem Phys 2024; 26:12753-12763. [PMID: 38619367 DOI: 10.1039/d4cp00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In a previous study, electrospray ionization, collision-induced dissociation (CID), and gas-phase ion-molecule reactions were used to create and characterize ions derived from homogeneous precursors composed of a uranyl cation (UVIO22+) coordinated by either formate or acetate ligands [E. Perez, C. Hanley, S. Koehler, J. Pestok, N. Polonsky and M. Van Stipdonk, Gas phase reactions of ions derived from anionic uranyl formate and uranyl acetate complexes, J. Am. Soc. Mass Spectrom., 2016, 27, 1989-1998]. Here, we describe a follow-up study of anionic complexes that contain a mix of formate and acetate ligands, namely [UO2(O2C-CH3)2(O2C-H)]- and [UO2(O2C-CH3)(O2C-H)2]-. Initial CID of either anion causes decarboxylation of a formate ligand to create carboxylate-coordinated U-hydride product ions. Subsequent CID of the hydride species causes elimination of acetaldehyde or formaldehyde, consistent with reactions that include intra-complex hydride attack upon bound acetate or formate ligands, respectively. Density functional theory (DFT) calculations reproduce the experimental observations, including the favored elimination of formaldehyde over acetaldehyde by hydride attack during CID of [UO2(H)(O2C-CH3)(O2C-H)]-. We also discovered that MSn CID of the acetate-formate complexes leads to generation of the oxyl-methide species, [UO2(O)(CH3)]-, which reacts with H2O to generate [UO2(O)(OH)]-. DFT calculations support the observation that formation of [UO2(O)(OH)]- by elimination of CH4 is favored over H2O addition and rearrangement to create [UO2(OH)2(CH3)]-.
Collapse
Affiliation(s)
- Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Irena J Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Anna Iacovino
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Theodore A Corcovilos
- Department of Physics, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| |
Collapse
|
2
|
Terhorst J, Lenze S, Metzler L, Fry AN, Ihabi A, Corcovilos TA, van Stipdonk MJ. Gas-phase synthesis of [OU-X] + (X = Cl, Br and I) from a UO 22+ precursor using ion-molecule reactions and an [OUCH] + intermediate. Dalton Trans 2024; 53:5478-5483. [PMID: 38414425 DOI: 10.1039/d3dt02811a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Difficulty in the preparation of gas-phase ions that include U in middle oxidation states(III,IV) have hampered efforts to investigate intrinsic structure, bonding and reactivity of model species. Our group has used preparative tandem mass spectrometry (PTMS) to synthesize a gas-phase U-methylidyne species, [OUCH]+, by elimination of CO from [UO2(CCH)]+ [M. J. van Stipdonk, I. J. Tatosian, A. C. Iacovino, A. R. Bubas, L. Metzler, M. C. Sherman and A. Somogyi, J. Am. Soc. Mass Spectrom., 2019, 30, 796-805], which has been used as an intermediate to create products such as [OUN]+ and [OUS]+ by ion-molecule reactions. Here, we investigated the reactions of [OUCH]+ with a range of alkyl halides to determine whether the methylidyne is a also a useful intermediate for production and study of the oxy-halide ions [OUX]+, where X = Cl, Br and I, formally U(IV) species for which intrinsic reactivity data is relatively scarce. Our experiments demonstrate that [OUX]+ is the dominant product ion generated by reaction [OUCH]+ with neutral regents such as CH3Cl, CH3CH2Br and CH2CHCH2I.
Collapse
Affiliation(s)
- Justin Terhorst
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Samuel Lenze
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Luke Metzler
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Allison N Fry
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Amina Ihabi
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
3
|
Andriola DM, Peterson KA. Coupled Cluster Study of the Heats of Formation of UF 6 and the Uranium Oxyhalides, UO 2X 2 (X = F, Cl, Br, I, and At). J Phys Chem A 2023; 127:7579-7585. [PMID: 37657073 DOI: 10.1021/acs.jpca.3c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The atomization enthalpies of the U(VI) species UF6 and the uranium oxyhalides UO2X2 (X = F, Cl, Br, I, and At) were calculated using a composite relativistic Feller-Peterson-Dixon (FPD) approach based on scalar relativistic DKH3-CCSD(T) with extrapolations to the CBS limit. The inherent multideterminant nature of the U atom was mitigated by utilizing the singly charged atomic cation in all calculations with correction back to the neutral asymptote via the accurate ionization energy of the U atom. The effects of SO coupling were recovered using full 4-component CCSD(T) with contributions due to the Gaunt Hamiltonian calculated using Dirac-Hartree-Fock. The final atomization enthalpy for UF6 (752.2 kcal/mol) was within 2.5 kcal/mol of the experimental value, but unfortunately the latter carries a ±2.4 kcal/mol uncertainty that is predominantly due to the experimental uncertainty in the formation enthalpy of the U atom. The analogous value for UO2F2 (607.6 kcal/mol) was in nearly exact agreement with the experiment, but the latter has a stated experimental uncertainty of ±4.3 kcal/mol. The FPD atomization enthalpy for UO2Cl2 (540.4 kcal/mol) was within the experimental error limit of ±5.5 kcal/mol. FPD atomization energies for the non-U-containing molecules (used for reaction enthalpies) H2O and HX (X = F, Cl, Br, I, and At) were within at most 0.3 kcal/mol of their experimental values where available. The FPD atomization enthalpies, together with FPD reaction enthalpies for two different reactions, were used to determine heats of formation for all species of this work, with estimated uncertainties of ±4 kcal/mol. The calculated heat of formation for UF6 (-511.0 kcal/mol) is within 2.5 kcal/mol of the accurately known (±0.45 kcal/mol) experimental value.
Collapse
Affiliation(s)
- Devon M Andriola
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| |
Collapse
|
4
|
Rodriguez VG, Culbertson HJ, Sigmon GE, Burns PC. Electrochemistry of Uranyl Peroxide Solutions during Electrospray Ionization. Inorg Chem 2023; 62:4456-4466. [PMID: 36888551 DOI: 10.1021/acs.inorgchem.2c03904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The ionization of uranyl triperoxide monomer, [(UO2)(O2)3]4- (UT), and uranyl peroxide cage cluster, [(UO2)28(O2)42 - x(OH)2x]28- (U28), was studied with electrospray ionization mass spectrometry (ESI-MS). Experiments including tandem mass spectrometry with collision-induced dissociation (MS/CID/MS), use of natural water and D2O as solvent, and use of N2 and SF6 as nebulizer gases, provide insight into the mechanisms of ionization. The U28 nanocluster under MS/CID/MS with collision energies ranging from 0 to 25 eV produced the monomeric units UOx- (x = 3-8) and UOxHy- (x = 4-8, y = 1, 2). UT under ESI conditions yielded the gas-phase ions UOx- (x = 4-6) and UOxHy- (x = 4-8, y = 1-3). Mechanisms that produce the observed anions in the UT and U28 systems are: (a) gas-phase combinations of uranyl monomers in the collision cell upon fragmentation of U28, (b) reduction-oxidation resulting from the electrospray process, and (c) ionization of surrounding analytes, creating reactive oxygen species that then coordinate to uranyl ions. The electronic structures of anions UOx- (x = 6-8) were investigated using density functional theory (DFT).
Collapse
Affiliation(s)
- Virginia G Rodriguez
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Heather J Culbertson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Jian T, Vasiliu M, Lee ZR, Zhang Z, Dixon DA, Gibson JK. Dinuclear Complexes of Uranyl, Neptunyl, and Plutonyl: Structures and Oxidation States Revealed by Experiment and Theory. J Phys Chem A 2022; 126:7695-7708. [PMID: 36251495 DOI: 10.1021/acs.jpca.2c06121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dinuclear perchlorate complexes of uranium, neptunium, and plutonium were characterized by reactivity and DFT, with results revealing structures containing pentavalent, hexavalent, and heptavalent actinyls, and actinyl-actinyl interactions (AAIs). Electrospray ionization produced native complexes [(AnO2)2(ClO4)3]- for An:An = U:U, Np:Np, Pu:Pu, and Np:Pu, which are intuitively formulated as actinyl(V) perchlorates. However, DFT identified lower-energy structures [(AnO2)(AnO3)(ClO4)2(ClO3)]- comprising a perchlorate fragmented to ClO3, actinyl(VI) cation AnVIO22+, and neutral AnO3. For U:U and Np:Np, and Np in Np:Pu, the coordinated AnO3 is calculated as actinyl(VI) with an equatorial oxo, [Oyl═AnVI═Oyl][═Oeq], whereas for Pu:Pu, it is plutonyl(V) oxyl, [Oyl═PuV═Oyl][-Oeq•]. The implied lower stability of PuVI versus NpVI indicates weaker Pu═Oeq versus Np═Oeq bonding. Adsorption of O2 by the U:U complex suggests oxidation of UV to UVI, corroborating the assignment of perchlorate [(AnVO2)2(ClO4)3]-. DFT predicts the O2 adducts are [(AnVIO2)(O2)(AnVIO2)(ClO4)3]- with actinyls oxidized from +V to +VI by bridging peroxide, O22-. In accordance with reactivity, O2- addition is computed as substantially exothermic for U:U and least favorable for Pu:Pu. Collision-induced dissociation of native complexes eliminated ClO2 to yield [(AnO2)(O)2(AnO2)(ClO4)2]-, in which fragmented O atoms bridge as oxyl O-• and oxo O2- to yield uranyl(VI) and plutonyl(VI), or as oxos O2- to yield neptunyl(VII), [Oyl═NpVII═Oyl]3+.
Collapse
Affiliation(s)
- Tian Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Zachary R Lee
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States.,Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky 40351, United States
| | - Zhicheng Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Bubas AR, Perez E, Metzler LJ, Rissler SD, Van Stipdonk MJ. Collision-induced dissociation of [UO 2 (NO 3 )(O 2 )] - and reactions of product ions with H 2 O and O 2. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4720. [PMID: 33813763 DOI: 10.1002/jms.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
We recently reported a detailed investigation of the collision-induced dissociation (CID) of [UO2 (NO3 )3 ]- and [UO2 (NO3 )2 (O2 )]- in a linear ion trap mass spectrometer (J. Mass Spectrom. DOI:10.1002/jms.4705). Here, we describe the CID of [UO2 (NO3 )(O2 )]- which is created directly by ESI, or indirectly by simple elimination of O2 from [UO2 (NO3 )(O2 )2 ]- . CID of [UO2 (NO3 )(O2 )]- creates product ions as at m/z 332 and m/z 318. The former may be formed directly by elimination of O2 , while the latter required decomposition of a nitrate ligand and elimination of NO2 . DFT calculations identify a pathway by which both product ions can be generated, which involves initial isomerization of [UO2 (NO3 )(O2 )]- to create [UO2 (O)(NO2 )(O2 )]- , from which elimination of NO2 or O2 will leave [UO2 (O)(O2 )]- or [UO2 (O)(NO2 )]- , respectively. For the latter product ion, the composition assignment of [UO2 (O)(NO2 )]- rather than [UO2 (NO3 )]- is supported by ion-molecule reaction behavior, and in particular, the fact that spontaneous addition of O2 , which is predicted to be the dominant reaction pathway for [UO2 (NO3 )]- is not observed. Instead, the species reacts with H2 O, which is predicted to be the favored pathway for [UO2 (O)(NO2 )]- . This result in particular demonstrates the utility of ion-molecule reactions to assist the determination of ion composition. As in our earlier study, we find that ions such as [UO2 (O)(NO2 )]- and [UO2 (O)(O2 )]- form H2 O adducts, and calculations suggest these species spontaneously rearrange to create dihydroxides.
Collapse
Affiliation(s)
- Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Evan Perez
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Luke J Metzler
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Scott D Rissler
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Bubas AR, Perez E, Metzler LJ, Rissler SD, Van Stipdonk MJ. Collision-induced dissociation of [UO 2 (NO 3 ) 3 ] - and [UO 2 (NO 3 ) 2 (O 2 )] - and reactions of product ions with H 2 O and O 2. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4705. [PMID: 33569852 DOI: 10.1002/jms.4705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Electrospray ionization (ESI) can produce a wide range of gas-phase uranyl (UO2 2+ ) complexes for tandem mass spectrometry studies of intrinsic structure and reactivity. We describe here the formation and collision-induced dissociation (CID) of [UO2 (NO3 )3 ]- and [UO2 (NO3 )2 (O2 )]- . Multiple-stage CID experiments reveal that the complexes dissociate in reactions that involve elimination of O2 , NO2 , or NO3 , and subsequent reactions of interesting uranyl-oxo product ions with (neutral) H2 O and/or O2 were investigated. Density functional theory (DFT) calculations reproduce experimental results and show that dissociation of nitrate ligands, with ejection of neutral NO2 , is favored for both [UO2 (NO3 )3 ]- and [UO2 (NO3 )2 (O2 )]- . DFT calculations also suggest that H2 O adducts to products such as [UO2 (O)(NO3 )]- spontaneously rearrange to create dihydroxides and that addition of O2 is favored over addition of H2 O to formally U(V) species.
Collapse
Affiliation(s)
- Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Evan Perez
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Luke J Metzler
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Scott D Rissler
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Maurice R, Dau PD, Hodée M, Renault E, Gibson JK. Controlling Cation‐Cation Interactions in Uranyl Coordination Dimers by Varying the Length of the Dicarboxylate Linker. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rémi Maurice
- SUBATECH, UMR CNRS 6457 IN2P3/IMT Atlantique/Université de Nantes 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Phuong D. Dau
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720 Berkeley California United States
| | | | | | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720 Berkeley California United States
| |
Collapse
|
9
|
Feng R, Glendening ED, Peterson KA. Coupled Cluster Study of the Interactions of AnO 2, AnO 2+, and AnO 22+ (An = U, Np) with N 2 and CO. Inorg Chem 2020; 59:4753-4763. [DOI: 10.1021/acs.inorgchem.9b03759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rulin Feng
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Eric D. Glendening
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
10
|
Tatosian I, Bubas A, Iacovino A, Kline S, Metzler L, Van Stipdonk M. Formation and hydrolysis of gas-phase [UO 2 (R)] + : R═CH 3 , CH 2 CH 3 , CH═CH 2 , and C 6 H 5. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:780-789. [PMID: 31426122 DOI: 10.1002/jms.4430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The goals of the present study were (a) to create positively charged organo-uranyl complexes with general formula [UO2 (R)]+ (eg, R═CH3 and CH2 CH3 ) by decarboxylation of [UO2 (O2 C─R)]+ precursors and (b) to identify the pathways by which the complexes, if formed, dissociate by collisional activation or otherwise react when exposed to gas-phase H2 O. Collision-induced dissociation (CID) of both [UO2 (O2 C─CH3 )]+ and [UO2 (O2 C─CH2 CH3 )]+ causes H+ transfer and elimination of a ketene to leave [UO2 (OH)]+ . However, CID of the alkoxides [UO2 (OCH2 CH3 )]+ and [UO2 (OCH2 CH2 CH3 )]+ produced [UO2 (CH3 )]+ and [UO2 (CH2 CH3 )]+ , respectively. Isolation of [UO2 (CH3 )]+ and [UO2 (CH2 CH3 )]+ for reaction with H2 O caused formation of [UO2 (H2 O)]+ by elimination of ·CH3 and ·CH2 CH3 : Hydrolysis was not observed. CID of the acrylate and benzoate versions of the complexes, [UO2 (O2 C─CH═CH2 )]+ and [UO2 (O2 C─C6 H5 )]+ , caused decarboxylation to leave [UO2 (CH═CH2 )]+ and [UO2 (C6 H5 )]+ , respectively. These organometallic species do react with H2 O to produce [UO2 (OH)]+ , and loss of the respective radicals to leave [UO2 (H2 O)]+ was not detected. Density functional theory calculations suggest that formation of [UO2 (OH)]+ , rather than the hydrated UV O2 + , cation is energetically favored regardless of the precursor ion. However, for the [UO2 (CH3 )]+ and [UO2 (CH2 CH3 )]+ precursors, the transition state energy for proton transfer to generate [UO2 (OH)]+ and the associated neutral alkanes is higher than the path involving direct elimination of the organic neutral to form [UO2 (H2 O)]+ . The situation is reversed for the [UO2 (CH═CH2 )]+ and [UO2 (C6 H5 )]+ precursors: The transition state for proton transfer is lower than the energy required for creation of [UO2 (H2 O)]+ by elimination of CH═CH2 or C6 H5 radical.
Collapse
Affiliation(s)
- Irena Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, Pennsylvania, 15282, USA
| | - Amanda Bubas
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, Pennsylvania, 15282, USA
- Department of Chemistry, University of Utah, 215 1400 E, Salt Lake City, UT, 84112
| | - Anna Iacovino
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, Pennsylvania, 15282, USA
| | - Susan Kline
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, Pennsylvania, 15282, USA
| | - Luke Metzler
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, Pennsylvania, 15282, USA
| | - Michael Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, Pennsylvania, 15282, USA
| |
Collapse
|
11
|
Hu SX, Jian J, Li J, Gibson JK. Destruction of the Uranyl Moiety in a U(V) “Cation–Cation” Interaction. Inorg Chem 2019; 58:10148-10159. [DOI: 10.1021/acs.inorgchem.9b01265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jiwen Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
van Stipdonk MJ, Tatosian IJ, Iacovino AC, Bubas AR, Metzler LJ, Sherman MC, Somogyi A. Gas-Phase Deconstruction of UO 22+: Mass Spectrometry Evidence for Generation of [OU VICH] + by Collision-Induced Dissociation of [U VIO 2(C≡CH)] . JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:796-805. [PMID: 30911904 DOI: 10.1007/s13361-019-02179-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Because of the high stability and inertness of the U=O bonds, activation and/or functionalization of UO22+ and UO2+ remain challenging tasks. We show here that collision-induced dissociation (CID) of the uranyl-propiolate cation, [UVIO2(O2C-C≡CH)]+, can be used to prepare [UVIO2(C≡CH)]+ in the gas phase by decarboxylation. Remarkably, CID of [UVIO2(C≡CH)]+ caused elimination of CO to create [OUVICH]+, thus providing a new example of a well-defined substitution of an "yl" oxo ligand of UVIO22+ in a unimolecular reaction. Relative energies for candidate structures based on density functional theory calculations suggest that the [OUVICH]+ ion is a uranium-methylidyne product, with a U≡C triple bond composed of one σ-bond with contributions from the U df and C sp hybrid orbitals, and two π-bonds with contributions from the U df and C p orbitals. Upon isolation, without imposed collisional activation, [OUVICH]+ appears to react spontaneously with O2 to produce [UVO2]+. Graphical Abstract .
Collapse
Affiliation(s)
- Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Irena J Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Anna C Iacovino
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
- Department of Chemistry, University of Utah, 315 1400 E, Salt Lake City, UT, 84112, USA
| | - Luke J Metzler
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Mary C Sherman
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Arpad Somogyi
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
George K, Muller J, Berthon L, Berthon C, Guillaumont D, Vitorica-Yrezabal IJ, Stafford HV, Natrajan LS, Tamain C. Exploring the Coordination of Plutonium and Mixed Plutonyl-Uranyl Complexes of Imidodiphosphinates. Inorg Chem 2019; 58:6904-6917. [PMID: 31025862 DOI: 10.1021/acs.inorgchem.9b00346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coordination chemistry of plutonium(IV) and plutonium(VI) with the complexing agents tetraphenyl and tetra-isopropyl imidodiphosphinate (TPIP- and TIPIP-) is reported. Treatment of sodium tetraphenylimidodiphosphinate (NaTPIP) and its related counterpart with peripheral isopropyl groups (NaTIPIP) with [NBu4]2[PuIV(NO3)6] yields the respective PuIV complexes [Pu(TPIP)3(NO3)] and [Pu(TIPIP)2(NO3)2] + [PuIV(TIPIP)3(NO3)]. Similarly, the reactions of NaTPIP and NaTIPIP with a Pu(VI) nitrate solution lead to the formation of [PuO2(HTIPIP)2(H2O)][NO3]2, which incorporates a protonated bidentate TIPIP- ligand, and [PuO2(TPIP)(HTPIP)(NO3)], where the protonated HTPIP ligand is bound in a monodentate fashion. Finally, a mixed U(VI)/Pu(VI) compound, [(UO2/PuO2)(TPIP)(HTPIP)(NO3)], is reported. All these actinyl complexes remain in the +VI oxidation state in solution over several weeks. The resultant complexes have been characterized using a combination of X-ray structural studies, NMR, optical, vibrational spectroscopies, and electrospray ionization mass spectrometry. The influence of the R-group (R = phenyl or iPr) on the nature of the complex is discussed with the help of DFT studies.
Collapse
Affiliation(s)
- Kathryn George
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Julie Muller
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Laurence Berthon
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Claude Berthon
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Dominique Guillaumont
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Iñigo J Vitorica-Yrezabal
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - H Victoria Stafford
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Louise S Natrajan
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Christelle Tamain
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| |
Collapse
|
14
|
Van Stipdonk MJ, Iacovino A, Tatosian I. Influence of Background H 2O on the Collision-Induced Dissociation Products Generated from [UO 2NO 3]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1416-1424. [PMID: 29654536 DOI: 10.1007/s13361-018-1947-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2+ when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael J Van Stipdonk
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Anna Iacovino
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Irena Tatosian
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
15
|
Gibson JK, de Jong WA, Dau PD, Gong Y. Heptavalent Actinide Tetroxides NpO4– and PuO4–: Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO4. J Phys Chem A 2017; 121:9156-9162. [DOI: 10.1021/acs.jpca.7b09721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John K. Gibson
- Chemical
Sciences Division and ‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wibe A. de Jong
- Chemical
Sciences Division and ‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phuong D. Dau
- Chemical
Sciences Division and ‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yu Gong
- Chemical
Sciences Division and ‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
de Jong WA, Dau PD, Wilson RE, Marçalo J, Van Stipdonk MJ, Corcovilos TA, Berden G, Martens J, Oomens J, Gibson JK. Revealing Disparate Chemistries of Protactinium and Uranium. Synthesis of the Molecular Uranium Tetroxide Anion, UO4–. Inorg Chem 2017; 56:3686-3694. [DOI: 10.1021/acs.inorgchem.7b00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wibe A. de Jong
- Computational Research
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phuong D. Dau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Joaquim Marçalo
- Centro
de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela Loures, Portugal
| | - Michael J. Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Theodore A. Corcovilos
- Department of
Physics, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Giel Berden
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van ‘t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Perez E, Hanley C, Koehler S, Pestok J, Polonsky N, Van Stipdonk M. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1989-1998. [PMID: 27604237 DOI: 10.1007/s13361-016-1481-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 05/18/2023]
Abstract
The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO22+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO22+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2+. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2+ coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Evan Perez
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Cassandra Hanley
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Stephen Koehler
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Jordan Pestok
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
- Sto-Rox High School, McKees Rocks, PA, 15136, USA
| | - Nevo Polonsky
- Chemistry Department, Bates College, Lewiston, Maine, 04240, USA
| | - Michael Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA.
| |
Collapse
|
18
|
Dau PD, Rios D, Gong Y, Michelini MC, Marçalo J, Shuh DK, Mogannam M, Van Stipdonk MJ, Corcovilos TA, Martens JK, Berden G, Oomens J, Redlich B, Gibson JK. Synthesis and Hydrolysis of Uranyl, Neptunyl, and Plutonyl Gas-Phase Complexes Exhibiting Discrete Actinide–Carbon Bonds. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuong D. Dau
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Rios
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yu Gong
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Maria C. Michelini
- Dipartimento
di Chimica, Università della Calabria, 87030 Arcavacata
di Rende, Italy
| | - Joaquim Marçalo
- Centro
de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - David K. Shuh
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mejdi Mogannam
- Skyline College, San Bruno, California 94066, United States
| | - Michael J. Van Stipdonk
- Department
of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Theodore A. Corcovilos
- Department
of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jonathan K. Martens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Britta Redlich
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - John K. Gibson
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Dau PD, Carretas JM, Marçalo J, Lukens WW, Gibson JK. Oxidation of Actinyl(V) Complexes by the Addition of Nitrogen Dioxide Is Revealed via the Replacement of Acetate by Nitrite. Inorg Chem 2015; 54:8755-60. [DOI: 10.1021/acs.inorgchem.5b01385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuong D. Dau
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - José M. Carretas
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior
Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior
Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Wayne W. Lukens
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John K. Gibson
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|