1
|
Hozana GN, Díaz Mirón G, Hassanali A. Data-Driven Discovery of the Origins of UV Absorption in the Alpha-3C Protein. J Phys Chem B 2025. [PMID: 40312142 DOI: 10.1021/acs.jpcb.5c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Over the past decade, there has been a growing body of experimental work showing that proteins devoid of aromatic and conjugated groups can absorb light in the near-UV beyond 300 nm and emit visible light. Understanding the origins of this phenomenon offers the possibility of designing noninvasive spectroscopic probes for local interactions in biological systems. It was recently found that the synthetic protein α3C displays UV-vis absorption between 250 and 800 nm, which was shown to arise from charge-transfer excitations between charged amino acids. In this work, we use data-driven approach to re-examine the origins of these features using a combination of molecular dynamics and excited-state simulations. Specifically, an unsupervised learning approach beginning with encoding protein environments with local atomic descriptors is employed to automatically detect relevant structural motifs. We identify three main motifs corresponding to different hydrogen-bonding patterns that are subsequently used to perform QM/MM simulations, including the entire protein and solvent bath with the density-functional tight-binding (DFTB) approach. Hydrogen-bonding structures involving arginine and carboxylate groups appear to be the most prone to near-UV absorption. We show that the magnitude of the UV-vis absorption predicted from the simulations is rather sensitive to the size of the QM region employed as well as to the inclusion of explicit solvation.
Collapse
Affiliation(s)
- Germaine Neza Hozana
- International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste 34151, Italy
- Dipartimento di Fisica, Universitá degli Studi di Trieste, Via Alfonso Valerio 2, Trieste 34127, Italy
| | - Gonzalo Díaz Mirón
- International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste 34151, Italy
| | - Ali Hassanali
- International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|
2
|
Xu X. Modeling electronic absorption spectra with nuclear quantum effects in constrained nuclear-electronic orbital framework. J Chem Phys 2025; 162:154106. [PMID: 40231874 DOI: 10.1063/5.0254111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/30/2025] [Indexed: 04/16/2025] Open
Abstract
Electronic absorption spectra serve as versatile and powerful tools in experiments. Accurate theoretical simulation of electronic absorption spectra is challenging because multiple factors such as environmental effects and nuclear quantum effects contribute to spectrum lineshapes. This work proposes a protocol to model electronic absorption spectra in the constrained nuclear-electronic orbital framework. Solvent effects, temperature effects, and particularly nuclear quantum effects can be taken into consideration in this unified framework. This protocol is applied to investigate the electronic absorption spectrum of the pyridine molecule in water. Nuclear quantum effects are found to induce a broadening and red shift of the absorption spectrum of pyridine.
Collapse
Affiliation(s)
- Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
3
|
Tsuru S, Sharma B, Hättig C, Marx D. Nuclear Quantum Effects Have a Significant Impact on UV/Vis Absorption Spectra of Chromophores in Water. Angew Chem Int Ed Engl 2025; 64:e202416058. [PMID: 39474981 DOI: 10.1002/anie.202416058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
Despite the broadly acknowledged importance of solvation effects on measured UV/Vis spectra in the context of solvatochromism or chemical reactions in solution, it is still an open challenge to calculate UV/Vis spectra with predictive accuracy. This is particularly true when it comes to the impact of nuclear quantum effects on these experimental observables. In the present work, we calculate the UV/Vis absorption spectrum of indole in aqueous solution with a combination of a correlated wavefunction method for computing electronic excitation energies and enhanced path integral simulations for rigorous sampling of nuclear configurations including the quantum effects in solution. After validating our approach based on gas-phase benchmarking, we demonstrate that the lineshape of the spectrum measured in aqueous solution is quantitatively recovered, without the application of any shifting, scaling, or broadening, only after including nuclear quantum effects in addition to thermal fluctuations and solvation at ambient conditions. Our findings demonstrate that nuclear quantum effects are "visible" in UV/Vis spectra of chromophores measured in solution even at room temperature and, therefore, that they must be considered computationally to achieve predictive accuracy.
Collapse
Affiliation(s)
- Shota Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
- RIKEN Center for Computational Science, Minatojima-minami 7-1-26, 650-0047, Kobe, Japan
| | - Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
4
|
Khanna A, Shedge SV, Zuehlsdorff TJ, Isborn CM. Calculating absorption and fluorescence spectra for chromophores in solution with ensemble Franck-Condon methods. J Chem Phys 2024; 161:044121. [PMID: 39077907 DOI: 10.1063/5.0217080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Accurately modeling absorption and fluorescence spectra for molecules in solution poses a challenge due to the need to incorporate both vibronic and environmental effects, as well as the necessity of accurate excited state electronic structure calculations. Nuclear ensemble approaches capture explicit environmental effects, Franck-Condon methods capture vibronic effects, and recently introduced ensemble-Franck-Condon approaches combine the advantages of both methods. In this study, we present and analyze simulated absorption and fluorescence spectra generated with combined ensemble-Franck-Condon approaches for three chromophore-solvent systems and compare them to standard ensemble and Franck-Condon spectra, as well as to the experiment. Employing configurations obtained from ground and excited state ab initio molecular dynamics, three combined ensemble-Franck-Condon approaches are directly compared to each other to assess the accuracy and relative computational time. We find that the approach employing an average finite-temperature Franck-Condon line shape generates spectra nearly identical to the direct summation of an ensemble of Franck-Condon spectra at one-fourth of the computational cost. We analyze how the spectral simulation method, as well as the level of electronic structure theory, affects spectral line shapes and associated Stokes shifts for 7-nitrobenz-2-oxa-1,3-diazol-4-yl and Nile red in dimethyl sulfoxide and 7-methoxy coumarin-4-acetic acid in methanol. For the first time, our studies show the capability of combined ensemble-Franck-Condon methods for both absorption and fluorescence spectroscopy and provide a powerful tool for simulating linear optical spectra.
Collapse
Affiliation(s)
- Ajay Khanna
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Sapana V Shedge
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
5
|
Chen MS, Mao Y, Snider A, Gupta P, Montoya-Castillo A, Zuehlsdorff TJ, Isborn CM, Markland TE. Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure. J Phys Chem Lett 2023; 14:6610-6619. [PMID: 37459252 DOI: 10.1021/acs.jpclett.3c01444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.
Collapse
Affiliation(s)
- Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Andrew Snider
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Prachi Gupta
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Kaluva S, Karri VL, Kharat B, Naganathappa M. Many-body analysis and spectroscopic characterization of diazene oligomers: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:121957. [PMID: 36371876 DOI: 10.1016/j.saa.2022.121957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The present study reports the many-body analysis and spectroscopic characterization of linear and cyclic diazene oligomers in gas and water solvent states. The oligomers of diazene from monomer to pentamer have been considered for the study. The spectroscopic studies such as geometrical parameters, infrared spectra, electronic absorption spectra, and natural transition orbitals (NTOs) were reported. Many-body analysis techniques have been implemented to study the interactions among the diazene oligomers. These calculations have been performed using exchange and correlation functional (B3LYP) and 6-311++G (d,p) basis set. The geometrical parameters and infrared modes of monomer diazene in the gas state are well-matched with the available experimental determinations at this level of theory. A significant change in vibrational modes of linear and cyclic diazene oligomers has been observed in the gas phase-to-water solvent state. The time-dependent density functional theory (TD-DFT) has been used to calculate the electronic absorption spectra of diazene oligomers. The Wavelength of electronic transitions, oscillator strength, and HOMO to LUMO gap has been reported. Many-body analysis shows that two-, three-, four-, and five-body energies have a remarkable contribution to the binding energy in addition to relaxation energies. All these calculations have been performed using Gaussian 16 program package.
Collapse
Affiliation(s)
- Sumalya Kaluva
- Department of Physics, School of Science, GITAM (Deemed to be University), Hyderabad 502329, TS, India
| | - Venkata Lakshmi Karri
- Department of Physics, School of Science, GITAM (Deemed to be University), Hyderabad 502329, TS, India
| | - Bhagwat Kharat
- Department of Physics, Swami Vivekanand Senior College, Mantha 431504, MH, India
| | - Mahadevappa Naganathappa
- Department of Physics, School of Science, GITAM (Deemed to be University), Hyderabad 502329, TS, India.
| |
Collapse
|
7
|
Ogawa T, Ohashi H, Anilkumar GM, Tamaki T, Yamaguchi T. Suitable acid groups and density in electrolytes to facilitate proton conduction. Phys Chem Chem Phys 2021; 23:23778-23786. [PMID: 34643626 DOI: 10.1039/d1cp00718a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proton conducting materials suffer from low proton conductivity under low-relative humidity (RH) conditions. Previously, it was reported that acid-acid interactions, where acids interact with each other at close distances, can facilitate proton conduction without water movement and are promising for overcoming this drawback [T. Ogawa, H. Ohashi, T. Tamaki and T. Yamaguchi, Chem. Phys. Lett., 2019, 731, 136627]. However, acid groups have not been compared to find a suitable acid group and density for the interaction, which is important to experimentally synthesize the material. Here, we performed ab initio calculations to identify acid groups and acid densities as a polymer design that effectively causes acid-acid interactions. The evaluation method employed parameters based on several different optimized coordination interactions of acids and water molecules. The results show that the order of the abilities of polymer electrolytes to readily induce acid-acid interactions is hydrocarbon-based phosphonated polymers > phosphonated aromatic hydrocarbon polymers > perfluorosulfonic acid polymers ≈ perfluorophosphonic acid polymers > sulfonated aromatic hydrocarbon polymers. The acid-acid interaction becomes stronger as the distance between acids decreases. The preferable distance between phosphonate moieties is within 13 Å.
Collapse
Affiliation(s)
- Takaya Ogawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan.
| | - Hidenori Ohashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan.
| | - Gopinathan M Anilkumar
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan. .,Research & Development Center, Noritake, Co., Ltd., 300 Higashiyama, Miyoshi cho, Miyoshi, Aichi 470-0293, Japan
| | - Takanori Tamaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan. .,Kanagawa Institute of Industrial Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan. .,Kanagawa Institute of Industrial Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
8
|
Borrego-Sánchez A, Zemmouche M, Carmona-García J, Francés-Monerris A, Mulet P, Navizet I, Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air-Water Interface. J Chem Theory Comput 2021; 17:3571-3582. [PMID: 33974417 PMCID: PMC8444339 DOI: 10.1021/acs.jctc.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Theoretical determinations of absorption cross sections (σ) in the gas phase and molar extinction coefficients (ε) in condensed phases (water solution, interfaces or surfaces, protein or nucleic acids embeddings, etc.) are of interest when rates of photochemical processes, J = ∫ ϕ(λ) σ(λ) I(λ) dλ, are needed, where ϕ(λ) and I(λ) are the quantum yield of the process and the irradiance of the light source, respectively, as functions of the wavelength λ. Efficient computational strategies based on single-reference quantum-chemistry methods have been developed enabling determinations of line shapes or, in some cases, achieving rovibrational resolution. Developments are however lacking for strongly correlated problems, with many excited states, high-order excitations, and/or near degeneracies between states of the same and different spin multiplicities. In this work, we define and compare the performance of distinct computational strategies using multiconfigurational quantum chemistry, nuclear sampling of the chromophore (by means of molecular dynamics, ab initio molecular dynamics, or Wigner sampling), and conformational and statistical sampling of the environment (by means of molecular dynamics). A new mathematical approach revisiting previous absolute orientation algorithms is also developed to improve alignments of geometries. These approaches are benchmarked through the nπ* band of acrolein not only in the gas phase and water solution but also in a gas-phase/water interface, a common situation for instance in atmospheric chemistry. Subsequently, the best strategy is used to compute the absorption band for the adduct formed upon addition of an OH radical to the C6 position of uracil and compared with the available experimental data. Overall, quantum Wigner sampling of the chromophore with molecular dynamics sampling of the environment with CASPT2 electronic-structure determinations arise as a powerful methodology to predict meaningful σ(λ) and ε(λ) band line shapes with accurate absolute intensities.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra, CSIC-University
of Granada, Av. de las
Palmeras 4, 18100 Armilla, Granada, Spain
| | - Madjid Zemmouche
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Javier Carmona-García
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| | - Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departamento
de Química Física, Universitat
de València, C/Dr.
Moliner 50, 46100 Burjassot, Spain
| | - Pep Mulet
- Departamento
de Matemáticas Área de Matemática Aplicada Facultad
de Matemáticas C/Dr. Moliner, 50 46100 Burjassot, Spain
| | - Isabelle Navizet
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| |
Collapse
|
9
|
Abstract
Intrinsic fluorescence of nonaromatic amino acids is a puzzling phenomenon with an enormous potential in biophotonic applications. The physical origins of this effect, however, remain elusive. Herein, we demonstrate how specific hydrogen bond networks can modulate fluorescence. We highlight the key role played by short hydrogen bonds, present in the protein structure, on the ensuing fluorescence. We provide detailed experimental and molecular evidence to explain these unusual nonaromatic optical properties. Our findings should benefit the design of novel optically active biomaterials for applications in biosensing and imaging. Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.
Collapse
|
10
|
Abou-Hatab S, Carnevale V, Matsika S. Modeling solvation effects on absorption and fluorescence spectra of indole in aqueous solution. J Chem Phys 2021; 154:064104. [PMID: 33588532 PMCID: PMC7878019 DOI: 10.1063/5.0038342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Modeling the optical spectra of molecules in solution presents a challenge, so it is important to understand which of the solvation effects (i.e., electrostatics, mutual polarization, and hydrogen bonding interactions between solute and solvent molecules) are crucial in reproducing the various features of the absorption and fluorescence spectra and to identify a sufficient theoretical model that accurately captures these effects with minimal computational cost. In this study, we use various implicit and explicit solvation models, such as molecular dynamics coupled with non-polarizable and polarizable force fields, as well as Car-Parrinello molecular dynamics, to model the absorption and fluorescence spectra of indole in aqueous solution. The excited states are computed using the equation of motion coupled cluster with single and double excitations combined with the effective fragment potential to represent water molecules, which we found to be a computationally efficient approach for modeling large solute-solvent clusters at a high level of quantum theory. We find that modeling mutual polarization, compared to other solvation effects, is a dominating factor for accurately reproducing the position of the peaks and spectral line shape of the absorption spectrum of indole in solution. We present an in-depth analysis of the influence that different solvation models have on the electronic excited states responsible for the features of the absorption spectra. Modeling fluorescence is more challenging since it is hard to reproduce even the correct emitting state, and force field parameters need to be re-evaluated.
Collapse
Affiliation(s)
- Salsabil Abou-Hatab
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
11
|
Gustafsson C, Shirani H, Leira P, Rehn DR, Linares M, Nilsson KPR, Norman P, Lindgren M. Deciphering the Electronic Transitions of Thiophene-Based Donor-Acceptor-Donor Pentameric Ligands Utilized for Multimodal Fluorescence Microscopy of Protein Aggregates. Chemphyschem 2021; 22:323-335. [PMID: 33219724 PMCID: PMC7898931 DOI: 10.1002/cphc.202000669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Indexed: 12/23/2022]
Abstract
Anionic pentameric thiophene acetates can be used for fluorescence detection and diagnosis of protein amyloid aggregates. Replacing the central thiophene unit by benzothiadiazole (BTD) or quinoxaline (QX) leads to large emission shifts and basic spectral features have been reported [Chem. Eur. J. 2015, 21, 15133-13137]. Here we present new detailed experimental results of solvent effects, time-resolved fluorescence and examples employing multi-photon microscopy and lifetime imaging. Quantum chemical response calculations elucidate how the introduction of the BTD/QX groups changes the electronic states and emissions. The dramatic red-shift follows an increased conjugation and quinoid character of the π-electrons of the thiophene backbone. An efficient charge transfer in the excited states S1 and S2 compared to the all-thiophene analogue makes these more sensitive to the polarity and quenching by the solvent. Taken together, the results guide in the interpretation of images of stained Alzheimer disease brain sections employing advanced fluorescence microscopy and lifetime imaging, and can aid in optimizing future fluorescent ligand development.
Collapse
Affiliation(s)
- Camilla Gustafsson
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Hamid Shirani
- Division of Chemistry, Department of PhysicsChemistry and Biology Linköping University581 83LinköpingSweden
| | - Petter Leira
- Department of Physics-Faculty of Natural SciencesNorwegian University of Science and Technology (NTNU)7491TrondheimNorway
| | - Dirk R. Rehn
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Mathieu Linares
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
- Laboratory of Organic Electronics and Scientific Visualization GroupITN and Swedish e-Science Research Center (SeRC) Linköping University581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Division of Chemistry, Department of PhysicsChemistry and Biology Linköping University581 83LinköpingSweden
| | - Patrick Norman
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Mikael Lindgren
- Department of Physics-Faculty of Natural SciencesNorwegian University of Science and Technology (NTNU)7491TrondheimNorway
| |
Collapse
|
12
|
Fidanyan K, Hamada I, Rossi M. Quantum Nuclei at Weakly Bonded Interfaces: The Case of Cyclohexane on Rh(111). ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karen Fidanyan
- Fritz Haber Institute of the Max Planck Society Faradayweg 4‐6 Berlin 14195 Germany
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 Hamburg 22761 Germany
| | - Ikutaro Hamada
- Department of Precision Engineering Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society Faradayweg 4‐6 Berlin 14195 Germany
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 Hamburg 22761 Germany
| |
Collapse
|
13
|
Green JA, Asha H, Santoro F, Improta R. Excitonic Model for Strongly Coupled Multichromophoric Systems: The Electronic Circular Dichroism Spectra of Guanine Quadruplexes as Test Cases. J Chem Theory Comput 2021; 17:405-415. [PMID: 33378185 DOI: 10.1021/acs.jctc.0c01100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We here propose a general and flexible approach, based on fragment diabatization, which incorporates charge transfer states and significantly increases the reliability of excitonic Hamiltonians for systems where the chromophores are very close. This model (FrDEx) is used to compute the electronic circular dichroism and absorption spectra of two prototype guanine-rich DNA sequences folded in quadruple helices (GQs), i.e., a fragment of the human telomeric sequence (Tel21, antiparallel), and (TGGGGT)4 (TG4T, parallel). Calculations on different subsets of Tel21 and TG4T, from dimers to tetramers, show that FrDEx provides spectra close to the reference full quantum mechanical (QM) ones (obtained with time-dependent density functional theory), with significant improvements with respect to "standard" excitonic Hamiltonians. Furthermore, these tests enable the most cost-effective procedure for the whole GQ to be determined. FrDEx spectra of Tel21 and TG4T are also in good agreement with the QM and experimental ones and give access to interesting insights into the chemical-physical effects modulating the spectral signals. FrDEx could be profitably used to investigate many other biological and nanotechnological materials, from DNA to (opto)electronic polymers.
Collapse
Affiliation(s)
- James A Green
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Haritha Asha
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| |
Collapse
|
14
|
Ahirwar MB, Gadre SR, Deshmukh MM. Direct and Reliable Method for Estimating the Hydrogen Bond Energies and Cooperativity in Water Clusters, W n, n = 3 to 8. J Phys Chem A 2020; 124:6699-6706. [PMID: 32786666 DOI: 10.1021/acs.jpca.0c05631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
No direct method for estimating the individual O-H···O hydrogen bond (H-bond) energies in water clusters (Wn) exists in the literature. In this work, we propose such a direct method based on the molecular tailoring approach, which also enables the estimation of the cooperativity contributions. The calculated H-bond energies at MP2(full)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVDZ levels for Wn, n = 3 to 8, agree well with one another and fall between 0.3 and 11.6 kcal mol-1 with the cooperativity contributions in the range of -1.2 and 7.0 kcal mol-1. For gauging the accuracy of our H-bond energies for a cluster, the H-bond energy sum is added to the sum of monomer energies, and the results are compared with the respective total energy. These two values agree with each other to within 8.3 mH (∼5 kcal mol-1), testifying the accuracy of our estimated H-bond energies. Further, these H-bond strengths show a good correlation with the respective O-H stretching frequencies and the molecular electron density values at the (3, -1) O-H···O H-bond critical point.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Shridhar R Gadre
- Interdisciplinary School of Scientific Computing and Department of Chemistry, Savitribai Phule Pune University, Pune 411 007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
15
|
Wang Y, Zhao Z, Yuan WZ. Intrinsic Luminescence from Nonaromatic Biomolecules. Chempluschem 2020; 85:1065-1080. [DOI: 10.1002/cplu.202000021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yunzhong Wang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Lab of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research CenterShanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 P. R. China
| | - Zihao Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Lab of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research CenterShanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 P. R. China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Lab of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research CenterShanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 P. R. China
| |
Collapse
|
16
|
Joseph SK, Kuritz N, Yahel E, Lapshina N, Rosenman G, Natan A. Proton-Transfer-Induced Fluorescence in Self-Assembled Short Peptides. J Phys Chem A 2019; 123:1758-1765. [DOI: 10.1021/acs.jpca.8b09183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sijo K. Joseph
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Natalia Kuritz
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Eldad Yahel
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nadezda Lapshina
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gil Rosenman
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Amir Natan
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
17
|
Kojić M, Lyskov I, Milovanović B, Marian CM, Etinski M. The UVA response of enolic dibenzoylmethane: beyond the static approach. Photochem Photobiol Sci 2019; 18:1324-1332. [DOI: 10.1039/c9pp00005d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nπ* and ππ* states of dibenzoylmethane are vibronically coupled and their crossing occurs during the excited-state intramolecular proton transfer.
Collapse
Affiliation(s)
- Marko Kojić
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Igor Lyskov
- Chemical and Quantum Physics Group
- ARC Centre of Excellence in Exciton Science
- School of Science
- RMIT University
- Melbourne
| | | | - Christel M. Marian
- Institute of Theoretical and Computational Chemistry
- Heinrich Heine University Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Mihajlo Etinski
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
18
|
Zuehlsdorff TJ, Napoli JA, Milanese JM, Markland TE, Isborn CM. Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water. J Chem Phys 2018; 149:024107. [PMID: 30007372 DOI: 10.1063/1.5025517] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many physical phenomena must be accounted for to accurately model solution-phase optical spectral line shapes, from the sampling of chromophore-solvent configurations to the electronic-vibrational transitions leading to vibronic fine structure. Here we thoroughly explore the role of nuclear quantum effects, direct and indirect solvent effects, and vibronic effects in the computation of the optical spectrum of the aqueously solvated anionic chromophores of green fluorescent protein and photoactive yellow protein. By analyzing the chromophore and solvent configurations, the distributions of vertical excitation energies, the absorption spectra computed within the ensemble approach, and the absorption spectra computed within the ensemble plus zero-temperature Franck-Condon approach, we show how solvent, nuclear quantum effects, and vibronic transitions alter the optical absorption spectra. We find that including nuclear quantum effects in the sampling of chromophore-solvent configurations using ab initio path integral molecular dynamics simulations leads to improved spectral shapes through three mechanisms. The three mechanisms that lead to line shape broadening and a better description of the high-energy tail are softening of heavy atom bonds in the chromophore that couple to the optically bright state, widening the distribution of vertical excitation energies from more diverse solvation environments, and redistributing spectral weight from the 0-0 vibronic transition to higher energy vibronic transitions when computing the Franck-Condon spectrum in a frozen solvent pocket. The absorption spectra computed using the combined ensemble plus zero-temperature Franck-Condon approach yield significant improvements in spectral shape and width compared to the spectra computed with the ensemble approach. Using the combined approach with configurations sampled from path integral molecular dynamics trajectories presents a significant step forward in accurately modeling the absorption spectra of aqueously solvated chromophores.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Joseph A Napoli
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Joel M Milanese
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
19
|
Law YK, Hassanali AA. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores. J Chem Phys 2018; 148:102331. [PMID: 29544302 DOI: 10.1063/1.5005056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.
Collapse
Affiliation(s)
- Y K Law
- School of Natural Sciences and Mathematics, Indiana University East, Richmond, Indiana 47374, USA
| | - A A Hassanali
- Condensed Matter and Statistical Physics Section, The Abdus Salaam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|
20
|
Jeszenői N, Schilli G, Bálint M, Horváth I, Hetényi C. Analysis of the influence of simulation parameters on biomolecule-linked water networks. J Mol Graph Model 2018; 82:117-128. [DOI: 10.1016/j.jmgm.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/27/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
|
21
|
Hydrogen Bonds and Life in the Universe. Life (Basel) 2018; 8:life8010001. [PMID: 29301382 PMCID: PMC5871933 DOI: 10.3390/life8010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022] Open
Abstract
The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.
Collapse
|
22
|
Wang L, Fried SD, Markland TE. Proton Network Flexibility Enables Robustness and Large Electric Fields in the Ketosteroid Isomerase Active Site. J Phys Chem B 2017; 121:9807-9815. [DOI: 10.1021/acs.jpcb.7b06985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lu Wang
- Department
of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Stephen D. Fried
- Medical Research
Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Thomas E. Markland
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Bhattacharya A, Bhowmik S, Singh AK, Kodgire P, Das AK, Mukherjee TK. Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10606-10615. [PMID: 28930631 DOI: 10.1021/acs.langmuir.7b02463] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure. Our study suggests that this low energy fluorescence band is not due to any particular residue/sequence, but rather it is a common feature of self-assembled peptide bonds. The present findings of intrinsic blue fluorescence from oligomeric interfaces pave the way for future applications of this unique visual phenomenon for early stage detection of various protein aggregation related human diseases.
Collapse
Affiliation(s)
- Arpan Bhattacharya
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Soumitra Bhowmik
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Amit K Singh
- Centre of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Prashant Kodgire
- Centre of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Apurba K Das
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
24
|
Sappati S, Hassanali A, Gebauer R, Ghosh P. Nuclear quantum effects in a HIV/cancer inhibitor: The case of ellipticine. J Chem Phys 2017; 145:205102. [PMID: 27908111 DOI: 10.1063/1.4968046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ellipticine is a natural product that is currently being actively investigated for its inhibitory cancer and HIV properties. Here we use path-integral molecular dynamics coupled with excited state calculations to characterize the role of nuclear quantum effects on the structural and electronic properties of ellipticine in water, a common biological solvent. Quantum effects collectively enhance the fluctuations of both light and heavy nuclei of the covalent and hydrogen bonds in ellipticine. In particular, for the ellipticine-water system, where the proton donor and acceptor have different proton affinities, we find that nuclear quantum effects (NQEs) strengthen both the strong and the weak H bonds. This is in contrast to what is observed for the cases where the proton affinity of the donors and acceptors is same. These structural fluctuations cause a significant red-shift in the absorption spectra and an increase in the broadening, bringing it into closer agreement with the experiments. Our work shows that nuclear quantum effects alter both qualitatively and quantitatively the optical properties of this biologically relevant system and highlights the importance of the inclusion of these effects in the microscopic understanding of their optical properties. We propose that isotopic substitution will produce a blue shift and a reduction in the broadening of the absorption peak.
Collapse
Affiliation(s)
- Subrahmanyam Sappati
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section, The Abdus Salam International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - Ralph Gebauer
- Condensed Matter and Statistical Physics Section, The Abdus Salam International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - Prasenjit Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
25
|
Grisanti L, Pinotsi D, Gebauer R, Kaminski Schierle GS, Hassanali AA. A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Phys Chem Chem Phys 2017; 19:4030-4040. [PMID: 28111679 PMCID: PMC7612978 DOI: 10.1039/c6cp07564a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Amyloid fibrils have been shown to have peculiar optical properties since they can exhibit fluorescence in the absence of aromatic residues. In a recent study, we have shown that proton transfer (PT) events along hydrogen bonds (HBs) are coupled to absorption in the near UV range. Here, we gain more insights into the different types of hydrogen bonding interactions that occur in our model systems and the molecular factors that control the susceptibility of the protons to undergo PT and how this couples to the optical properties. In the case of the strong N-C termini interactions, a nearby methionine residue stabilizes the non-zwitterionic NH2-COOH pair, while zwitterionic NH3+-COO- is stabilized by the proximity of nearby crystallographic water molecules. Proton motion along the hydrogen bonds in the fibril is intimately coupled to the compression of the heavier atoms, similar to what is observed in bulk water. Small changes in the compression of the hydrogen bonds in the protein can lead to significant changes in both the ground and excited state potential energy surfaces associated with PT. Finally, we also reinforce the importance of nuclear quantum fluctuations of protons in the HBs of the amyloid proteins.
Collapse
Affiliation(s)
- Luca Grisanti
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | - Dorothea Pinotsi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Ralph Gebauer
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Ali A Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| |
Collapse
|
26
|
Hollas D, Muchová E, Slavíček P. Modeling Liquid Photoemission Spectra: Path-Integral Molecular Dynamics Combined with Tuned Range-Separated Hybrid Functionals. J Chem Theory Comput 2016; 12:5009-5017. [DOI: 10.1021/acs.jctc.6b00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Hollas
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
27
|
Pinotsi D, Grisanti L, Mahou P, Gebauer R, Kaminski CF, Hassanali A, Kaminski Schierle GS. Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures. J Am Chem Soc 2016; 138:3046-57. [PMID: 26824778 DOI: 10.1021/jacs.5b11012] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.
Collapse
Affiliation(s)
- Dorothea Pinotsi
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | - Luca Grisanti
- International Centre for Theoretical Physics , Strada Costiera 11, Trieste 34151 Italy
| | - Pierre Mahou
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | - Ralph Gebauer
- International Centre for Theoretical Physics , Strada Costiera 11, Trieste 34151 Italy
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | - Ali Hassanali
- International Centre for Theoretical Physics , Strada Costiera 11, Trieste 34151 Italy
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, United Kingdom
| |
Collapse
|
28
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|