1
|
Ma MY, Wang JP, Jing WQ, Guan Z, Jiao ZH, Wang GL, Chen JH, Zhao SF. Controlling the atomic-orbital-resolved photoionization for neon atoms by counter-rotating circularly polarized attosecond pulses. OPTICS EXPRESS 2021; 29:33245-33256. [PMID: 34809140 DOI: 10.1364/oe.438045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
We theoretically investigate the atomic-orbital-resolved vortex-shaped photoelectron momentum distributions (PMDs) and ionization probabilities by solving the two-dimensional time-dependent Schrödinger equation (2D-TDSE) of neon in a pair of delayed counter-rotating circularly polarized attosecond pulses. We found that the number of spiral arms in vortex patterns is twice the number of absorbed photons when the initial state is the ψm=±1 state, which satisfy a change from c2n+2 to c2n (n is the number of absorbed photons) rotational symmetry of the vortices if the 2p state is replaced by 2p+ or 2p- states. For two- and three-photon ionization, the magnetic quantum number dependence of ionization probabilities is quite weak. Interestingly, single-photon ionization is preferred when the electron and laser field corotate and ionization probabilities of 2p- is much larger than that of 2p+ if the proper time delay and wavelength are used. The relative ratio of ionization probabilities between 2p- and 2p+ is insensitive to laser peak intensity, which can be controlled by changing the wavelength, time delay, relative phase and amplitude ratio of two attosecond pulses.
Collapse
|
2
|
Xu QY, Yang ZJ, He YL, Gao FY, Lu HZ, Guo J. Ultrafast attosecond-magnetic-field generation of the charge migration process based on HeH 2+ and H 2 + electronically excited by circularly polarized laser pulses. OPTICS EXPRESS 2021; 29:32312-32324. [PMID: 34615305 DOI: 10.1364/oe.438264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The ultrafast process by the electron in molecular ions from one site or region to another that has come to be known as charge migration (CM), which is of fundamental importance to photon induced chemical or physical reactions. In this work, we study the electron current and ultrafast magnetic-field generation based on CM process of oriented asymmetric (HeH2+) and symmetric (H2 +) molecular ions. Calculated results show that they are ascribed to quantum interference of electronic states for these molecular ions under intense circularly polarized (CP) laser pulses. The two scenarios of (i) resonance excitation and (ii) direct ionization are considered through appropriately utilizing designed laser pulses. By comparison, the magnetic field induced by the scenario (i) is stronger than that of scenario (ii) for molecular ions. However, the scheme (ii) is very sensitive to the helicity of CP field, which is opposite to the scenario (i). Moreover, the magnetic field generated by H2 + is stronger than that by HeH2+ through scenario (i). Our findings provide a guiding principle for producing ultrafast magnetic fields in molecular systems for future research in ultrafast magneto-optics.
Collapse
|
3
|
Mineo H, Phan NL, La DK, Fujimura Y. Theoretical Study of Dynamic Stark-Induced π-Electron Rotations in Low-Symmetry Aromatic Ring Molecules beyond the Frozen Nuclear Approximation. J Phys Chem A 2021; 125:1476-1489. [PMID: 33570408 DOI: 10.1021/acs.jpca.0c10216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of vibrational motions on dynamic Stark-induced π-electron rotations in a low-symmetry aromatic ring molecule are theoretically studied in the adiabatic approximation. We adopt a simplified three-electronic state model with a few vibronic states. A pair of the lowest vibronic states in two electronic excited states is set degenerate by irradiation of two linearly polarized UV lasers. The resultant degenerate state is named the dynamic Stark-induced degenerate vibronic state (DSIDVS). The laser parameters (intensities and central frequencies) are determined under the conditions of DSIDVS formation. The aromatic ring molecules of interest are supposed to belong to the weak coupling case. The analytical expressions for the DSIDVS and coherent angular momentum LZ(t) are derived in the displaced harmonic oscillator (DHO) model. Two horizontal potential displacements (δα, δβ) between the two electronic excited states (α and β) and the ground state are the parameters in the DHO model. The LZ(t) calculated with δα = δβ is characterized by a regular sequence of the angular momentum pulses with a positive (or negative) constant. For a more general case with δα ≠ δβ, the regular sequence is broken down because of the contribution of the first excited vibronic state in each electronic state to LZ(t).
Collapse
Affiliation(s)
- Hirobumi Mineo
- Atomic Molecular and Optical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ngoc-Loan Phan
- Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Dung-Kiet La
- Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Yuichi Fujimura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 Japan
| |
Collapse
|
4
|
Electron Symmetry Breaking during Attosecond Charge Migration Induced by Laser Pulses: Point Group Analyses for Quantum Dynamics. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quantum simulations of the electron dynamics of oriented benzene and Mg-porphyrin driven by short (<10 fs) laser pulses yield electron symmetry breaking during attosecond charge migration. Nuclear motions are negligible on this time domain, i.e., the point group symmetries G = D6h and D4h of the nuclear scaffolds are conserved. At the same time, the symmetries of the one-electron densities are broken, however, to specific subgroups of G for the excited superposition states. These subgroups depend on the polarization and on the electric fields of the laser pulses. They can be determined either by inspection of the symmetry elements of the one-electron density which represents charge migration after the laser pulse, or by a new and more efficient group-theoretical approach. The results agree perfectly with each other. They suggest laser control of symmetry breaking. The choice of the target subgroup is restricted, however, by a new theorem, i.e., it must contain the symmetry group of the time-dependent electronic Hamiltonian of the oriented molecule interacting with the laser pulse(s). This theorem can also be applied to confirm or to falsify complementary suggestions of electron symmetry breaking by laser pulses.
Collapse
|
5
|
Bouakline F, Tremblay JC. Is it really possible to control aromaticity of benzene with light? Phys Chem Chem Phys 2020; 22:15401-15412. [PMID: 32601631 DOI: 10.1039/c9cp06794a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent theoretical investigations claim that tailored laser pulses may selectively steer benzene's aromatic ground state to localized non-aromatic excited states. For instance, it has been shown that electronic wavepackets, involving the two lowest electronic eigenstates, exhibit subfemtosecond charge oscillation between equivalent Kekulé resonance structures. In this contribution, we show that such dynamical electron-localization in the molecule-fixed frame contravenes the principle of the indistinguishability of identical particles. This breach stems from a total omission of the nuclear degrees of freedom, giving rise to nonsymmetric electronic wavepackets under nuclear permutations. Enforcement of the latter leads to entanglement between the electronic and nuclear states. To obey quantum statistics, the entangled molecular states should involve compensating nuclear-permutation symmetries. This in turn engenders complete quenching of dynamical electron-localization in the molecule-fixed frame. Indeed, for the (six-fold) equilibrium geometry of benzene, group-theoretic analysis reveals that any electronic wavepacket exhibits a (D6h) totally symmetric electronic density, at all times. Thus, our results clearly show that the six carbon atoms, and the six C-C bonds, always have equal Mulliken charges, and equal bond orders, respectively. However, electronic wavepackets may display dynamical localization of the electronic density in the space-fixed frame, whenever they involve both even and odd space-inversion (parity) or permutation-inversion symmetry. Dynamical spatial-localization can be probed experimentally in the laboratory frame, but it should not be deemed equivalent to charge oscillation between benzene's identical electronic substructures, such as Kekulé resonance structures.
Collapse
Affiliation(s)
- F Bouakline
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
6
|
Hermann G, Pohl V, Dixit G, Tremblay JC. Probing Electronic Fluxes via Time-Resolved X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 124:013002. [PMID: 31976697 DOI: 10.1103/physrevlett.124.013002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The current flux density is a vector field that can be used to describe theoretically how electrons flow in a system out of equilibrium. In this work, we unequivocally demonstrate that the signal obtained from time-resolved x-ray scattering does not only map the time evolution of the electronic charge distribution, but also encodes information about the associated electronic current flux density. We show how the electronic current flux density qualitatively maps the distribution of electronic momenta and reveals the underlying mechanism of ultrafast charge migration processes, while also providing quantitative information about the timescales of electronic coherences.
Collapse
Affiliation(s)
- Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- QoD Technologies GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- QoD Technologies GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jean Christophe Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR 7019, ICPM, 1 Bd Arago, 57070 Metz, France
| |
Collapse
|
7
|
Yuan KJ, Bandrauk AD. Ultrafast X-ray photoelectron diffraction in triatomic molecules by circularly polarized attosecond light pulses. Phys Chem Chem Phys 2020; 22:325-336. [DOI: 10.1039/c9cp05213e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We theoretically study ultrafast photoelectron diffraction in triatomic molecules with cyclic geometry by ultrafast circular soft X-ray attosecond pulses.
Collapse
Affiliation(s)
- Kai-Jun Yuan
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun
- China
- Laboratoire de Chimie Théorique
| | - André D. Bandrauk
- Laboratoire de Chimie Théorique
- Faculté des Sciences
- Université de Sherbrooke
- Québec
- Canada
| |
Collapse
|
8
|
Yang L, Reimers JR, Kobayashi R, Hush NS. Competition between charge migration and charge transfer induced by nuclear motion following core ionization: Model systems and application to Li 2. J Chem Phys 2019; 151:124108. [PMID: 31575213 DOI: 10.1063/1.5117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attosecond and femtosecond spectroscopies present opportunities for the control of chemical reaction dynamics and products, as well as for quantum information processing; we address the somewhat unique situation of core-ionization spectroscopy which, for dimeric chromophores, leads to strong valence charge localization and hence tightly paired potential-energy surfaces of very similar shape. Application is made to the quantum dynamics of core-ionized Li2 +. This system is chosen as Li2 is the simplest stable molecule facilitating both core ionization and valence ionization. First, the quantum dynamics of some model surfaces are considered, with the surprising result that subtle differences in shape between core-ionization paired surfaces can lead to dramatic differences in the interplay between electronic charge migration and charge transfer induced by nuclear motion. Then, equation-of-motion coupled-cluster calculations are applied to determine potential-energy surfaces for 8 core-excited state pairs, calculations believed to be the first of their type for other than the lowest-energy core-ionized molecular pair. While known results for the lowest-energy pair suggest that Li2 + is unsuitable for studying charge migration, higher-energy pairs are predicted to yield results showing competition between charge migration and charge transfer. Central is a focus on the application of Hush's 1975 theory for core-ionized X-ray photoelectron spectroscopy to understand the shapes of the potential-energy surfaces and hence predict key features of charge migration.
Collapse
Affiliation(s)
- Likun Yang
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jeffrey R Reimers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rika Kobayashi
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Noel S Hush
- School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Probing Attosecond Electron Coherence in Molecular Charge Migration by Ultrafast X-Ray Photoelectron Imaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electron coherence is a fundamental quantum phenomenon in today’s ultrafast physics and chemistry research. Based on attosecond pump–probe schemes, ultrafast X-ray photoelectron imaging of molecules was used to monitor the coherent electron dynamics which is created by an XUV pulse. We performed simulations on the molecular ion H 2 + by numerically solving time-dependent Schrödinger equations. It was found that the X-ray photoelectron angular and momentum distributions depend on the time delay between the XUV pump and soft X-ray probe pulses. Varying the polarization and helicity of the soft X-ray probe pulse gave rise to a modulation of the time-resolved photoelectron distributions. The present results provide a new approach for exploring ultrafast coherent electron dynamics and charge migration in reactions of molecules on the attosecond time scale.
Collapse
|
10
|
Ulusoy IS, Wilson AK. Spin trapping and flipping in FeCO through relativistic electron dynamics. Phys Chem Chem Phys 2019; 21:7265-7271. [PMID: 30607408 DOI: 10.1039/c8cp06583g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal compounds are very versatile, and their characteristics can differ profoundly depending on their electronic structure. Compounds in which a spin transition from a low-spin to a high-spin state can be achieved through means of an optical excitation are particularly intriguing, as a controlled spin-flip opens promising avenues in areas such as sensing, information technology, molecular switches and energy technology. The fundamental mechanisms in spin crossover and spin transitions remain unanswered, due to the complexity of electronic structure and interplay of relativistic effects. Presented here is a new approach that allows the first direct study of spin flip dynamics through a mapping of spin-mixed to spin-pure states. The method is applied to FeCO and addresses the spin-flip dynamics during a spin transition. Wave packets that combine different spin states are generated through optical excitation and relevant mechanisms in optically triggered spin transitions are discussed.
Collapse
Affiliation(s)
- Inga S Ulusoy
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824-1322, USA.
| | | |
Collapse
|
11
|
From Symmetry Breaking via Charge Migration to
Symmetry Restoration in Electronic Ground and
Excited States: Quantum Control on the Attosecond
Time Scale. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article starts with an introductory survey of previous work on breaking and restoringthe electronic structure symmetry of atoms and molecules by means of two laser pulses. Accordingly,the first pulse breaks the symmetry of the system in its ground state with irreducible representationIRREPg by exciting it to a superposition of the ground state and an excited state with differentIRREPe. The superposition state is non-stationary, representing charge migration with period T inthe sub- to few femtosecond time domains. The second pulse stops charge migration and restoressymmetry by de-exciting the superposition state back to the ground state. Here, we present a newstrategy for symmetry restoration: The second laser pulse excites the superposition state to the excitedstate, which has the same symmetry as the ground state, but different IRREPe. The success dependson perfect time delay between the laser pulses, with precision of few attoseconds. The new strategyis demonstrated by quantum dynamics simulation for an oriented model system, benzene.
Collapse
|
12
|
Yuan KJ, Bandrauk AD. Ultrafast X-ray Photoelectron Imaging of Attosecond Electron Dynamics in Molecular Coherent Excitation. J Phys Chem A 2019; 123:1328-1336. [DOI: 10.1021/acs.jpca.8b12313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kai-Jun Yuan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China
- Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - André D. Bandrauk
- Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
13
|
Fábri C, Marquardt R, Császár AG, Quack M. Controlling tunneling in ammonia isotopomers. J Chem Phys 2019; 150:014102. [DOI: 10.1063/1.5063470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Roberto Marquardt
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratoire de Chimie Quantique, Institut de Chimie UMR 7177 CNRS/Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, 67081 Strasbourg Cedex, France
| | - Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Martin Quack
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Time-Resolved Photoelectron Imaging of Molecular Coherent Excitation and Charge Migration by Ultrashort Laser Pulses. J Phys Chem A 2018; 122:2241-2249. [DOI: 10.1021/acs.jpca.7b11669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Kanno M, Inada N, Kono H. Single-active-electron analysis of laser-polarization effects on atomic/molecular multiphoton excitation. J Chem Phys 2017; 147:154310. [DOI: 10.1063/1.4994876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Nobuyoshi Inada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Yuan KJ, Chelkowski S, Bandrauk AD. Ultrafast molecular photoionization by two-color orthogonally polarized ultraviolet laser pulses: Effects of relative pulse phases. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Attosecond angular flux of partial charges on the carbon atoms of benzene in non-aromatic excited state. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Shu CC, Dong D, Yuan KJ. Single-laser-induced quantum interference in photofragmentation reaction of D + 2. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1297861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chuan-Cun Shu
- School of Engineering and Information Technology, University of New South Wales , Canberra, ACT, Australia
| | - Daoyi Dong
- School of Engineering and Information Technology, University of New South Wales , Canberra, ACT, Australia
| | - Kai-Jun Yuan
- School of Engineering and Information Technology, University of New South Wales , Canberra, ACT, Australia
- Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke , Sherbrooke, Canada
| |
Collapse
|
20
|
Diestler DJ, Hermann G, Manz J. Charge Migration in Eyring, Walter and Kimball’s 1944 Model of the Electronically Excited Hydrogen-Molecule Ion. J Phys Chem A 2017. [DOI: 10.1021/acs.jpca.7b04714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunter Hermann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- State
Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
21
|
Yuan KJ, Shu CC, Dong D, Bandrauk AD. Attosecond Dynamics of Molecular Electronic Ring Currents. J Phys Chem Lett 2017; 8:2229-2235. [PMID: 28468499 DOI: 10.1021/acs.jpclett.7b00877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrafast charge migration is of fundamental importance to photoinduced chemical reactions. However, exploring such a quantum dynamical process requires demanding spatial and temporal resolutions. We show how electronic coherence dynamics induced in molecules by a circularly polarized UV pulse can be tracked by using a time-delayed circularly polarized attosecond X-ray pulse. The X-ray probe spectra retrieve an image at different time delays, encoding instantaneous pump-induced circular charge migration information on an attosecond time scale. A time-dependent ultrafast electronic coherence associated with the periodical circular ring currents shows a strong dependence on the helicity of the UV pulse, which may provide a direct approach to access and control the electronic quantum coherence dynamics in photophysical and photochemical reactions in real time.
Collapse
Affiliation(s)
- Kai-Jun Yuan
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke , Sherbrooke, Québec J1K 2R1, Canada
| | - Chuan-Cun Shu
- School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
| | - Daoyi Dong
- School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
| | - André D Bandrauk
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke , Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
22
|
Pohl V, Hermann G, Tremblay JC. An open-source framework for analyzing N
-electron dynamics. I. Multideterminantal wave functions. J Comput Chem 2017; 38:1515-1527. [DOI: 10.1002/jcc.24792] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | - Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | | |
Collapse
|
23
|
Ding H, Jia D, Manz J, Yang Y. Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI+. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| |
Collapse
|
24
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Yuan KJ, Bandrauk AD. Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses. Phys Chem Chem Phys 2017; 19:25846-25852. [DOI: 10.1039/c7cp05067d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exploring ultrafast charge migration is of great importance in biological and chemical reactions.
Collapse
Affiliation(s)
- Kai-Jun Yuan
- Laboratoire de Chimie Théorique
- Faculté des Sciences
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - André D. Bandrauk
- Laboratoire de Chimie Théorique
- Faculté des Sciences
- Université de Sherbrooke
- Sherbrooke
- Canada
| |
Collapse
|
26
|
Yuan KJ, Bandrauk AD. Monitoring coherent electron wave packet excitation dynamics by two-color attosecond laser pulses. J Chem Phys 2016; 145:194304. [DOI: 10.1063/1.4968230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
27
|
Hermann G, Tremblay JC. Ultrafast photoelectron migration in dye-sensitized solar cells: Influence of the binding mode and many-body interactions. J Chem Phys 2016; 145:174704. [PMID: 27825243 DOI: 10.1063/1.4966260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the present contribution, the ultrafast photoinduced electron migration dynamics at the interface between an alizarin dye and an anatase TiO2 thin film is investigated from first principles. Comparison between a time-dependent many-electron configuration interaction ansatz and a single active electron approach sheds light on the importance of many-body effects, stemming from uniquely defined initial conditions prior to photoexcitation. Particular emphasis is put on understanding the influence of the binding mode on the migration process. The dynamics is analyzed on the basis of a recently introduced toolset in the form of electron yields, electronic fluxes, and flux densities, to reveal microscopic details of the electron migration mechanism. From the many-body perspective, insight into the nature of electron-electron and hole-hole interactions during the charge transfer process is obtained. The present results reveal that the single active electron approach yields quantitatively and phenomenologically similar results as the many-electron ansatz. Furthermore, the charge migration processes in the dye-TiO2 model clusters with different binding modes exhibit similar mechanistic pathways but on largely different time scales.
Collapse
Affiliation(s)
- G Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - J C Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|