1
|
Doshi N, Giddings J, Luis L, Wu A, Ritchie K, Liu W, Chan W, Taing R, Chu J, Sreedhara A, Kannan A, Kei P, Shieh I, Graf T, Hu M. A Comprehensive Assessment of All-Oleate Polysorbate 80: Free Fatty Acid Particle Formation, Interfacial Protection and Oxidative Degradation. Pharm Res 2021; 38:531-548. [PMID: 33713012 DOI: 10.1007/s11095-021-03021-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility. METHODS FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2'-Azobis (2-amidinopropane) dihydrochloride stress model, respectively. RESULTS Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation. CONCLUSION AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Jamie Giddings
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Lin Luis
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Arthur Wu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kyle Ritchie
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wenqiang Liu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wayman Chan
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Rosalynn Taing
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jeff Chu
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Alavattam Sreedhara
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Aadithya Kannan
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Pervina Kei
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Ian Shieh
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Mark Hu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
2
|
Bellmaine S, Schnellbaecher A, Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med 2020; 160:696-718. [PMID: 32911085 DOI: 10.1016/j.freeradbiomed.2020.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Tryptophan is one of the essential mammalian amino acids and is thus a required component in human nutrition, animal feeds, and cell culture media. However, this aromatic amino acid is highly susceptible to oxidation and is known to degrade into multiple products during manufacturing, storage, and processing. Many physical and chemical processes contribute to the degradation of this compound, primarily via oxidation or cleavage of the highly reactive indole ring. The central contributing factors are reactive oxygen species, such as singlet oxygen, hydrogen peroxide, and hydroxyl radicals; light and photosensitizers; metals; and heat. In a multi-component mixture, tryptophan also commonly reacts with carbonyl-containing compounds, leading to a wide variety of products. The purpose of this review is to summarize the current state of knowledge regarding the degradation and interaction products of tryptophan in complex liquid solutions and in proteins. For the purposes of context, a brief summary of the key pathways in tryptophan metabolism will be included, along with common methods and issues in tryptophan manufacturing. The review will focus on the conditions that lead to tryptophan degradation, the products generated in these processes, their known biological effects, and methods which may be applied to stabilize the amino acid.
Collapse
Affiliation(s)
- Stephanie Bellmaine
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alisa Schnellbaecher
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
3
|
Jacobitz AW, Liu Q, Suravajjala S, Agrawal NJ. Tryptophan Oxidation of a Monoclonal Antibody Under Diverse Oxidative Stress Conditions: Distinct Oxidative Pathways Favor Specific Tryptophan Residues. J Pharm Sci 2020; 110:719-726. [PMID: 33198947 DOI: 10.1016/j.xphs.2020.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Tryptophan oxidation can play an important role in selecting therapeutic monoclonal antibodies for commercialization. Monoclonal antibodies that harbor particularly sensitive tryptophan residues are typically discarded in favor of oxidation resistant antibodies. The susceptibility of any individual tryptophan residue to oxidation is typically evaluated through forced degradation studies during the molecule development process. We compared the results of several common forced degradation "stress tests" for each tryptophan residue in a monoclonal antibody and found that high-stress oxidation conditions consistently provide a different ranking of oxidative sensitivity across the individual tryptophan residues compared to long-term thermal stability or low-stress conditions. We subsequently determined that this difference in ranking is largely due to an overabundance of double oxidation (i.e. detected as +32 Da) of specific tryptophan residues under high stress conditions compared to single oxidation (i.e. +16 Da). We posit that this double oxidation is in fact mechanistically distinct from the observed single oxidation and that high stress conditions favor the double oxidation mechanism (and double oxidation sensitive tryptophan residues) while single oxidation appears to be the primary mode of oxidation under H2O2 stress and long-term thermal stability and favors different tryptophan residues which are more susceptible to the single oxidation mechanism.
Collapse
|
4
|
Chen LD, Lawniczak JJ, Ding F, Bygrave PJ, Riahi S, Manby FR, Mukhopadhyay S, Miller TF. Embedded Mean-Field Theory for Solution-Phase Transition-Metal Polyolefin Catalysis. J Chem Theory Comput 2020; 16:4226-4237. [PMID: 32441933 DOI: 10.1021/acs.jctc.0c00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Decreasing the wall-clock time of quantum mechanics/molecular mechanics (QM/MM) calculations without sacrificing accuracy is a crucial prerequisite for widespread simulation of solution-phase dynamical processes. In this work, we demonstrate the use of embedded mean-field theory (EMFT) as the QM engine in QM/MM molecular dynamics (MD) simulations to examine polyolefin catalysts in solution. We show that employing EMFT in this mode preserves the accuracy of hybrid-functional DFT in the QM region, while providing up to 20-fold reductions in the cost per SCF cycle, thereby increasing the accessible simulation time-scales. We find that EMFT reproduces DFT-computed binding energies and optimized bond lengths to within chemical accuracy, as well as consistently ranking conformer stability. Furthermore, solution-phase EMFT/MM simulations provide insight into the interaction strength of strongly coordinating and bulky counterions.
Collapse
Affiliation(s)
- Leanne D Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - James J Lawniczak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Feizhi Ding
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Peter J Bygrave
- Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Saleh Riahi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frederick R Manby
- Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Uranga J, Mujika JI, Grande-Aztatzi R, Matxain JM. Oxidation of Acid, Base, and Amide Side-Chain Amino Acid Derivatives via Hydroxyl Radical. J Phys Chem B 2018; 122:4956-4971. [PMID: 29676577 DOI: 10.1021/acs.jpcb.7b12450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxyl radical (•OH) is known to be highly reactive. Herein, we analyze the oxidation of acid (Asp and Glu), base (Arg and Lys), and amide (Asn and Gln) containing amino acid derivatives by the consecutive attack of two •OH. In this work, we study the reaction pathway by means of density functional theory. The oxidation mechanism is divided into two steps: (1) the first •OH can abstract a H atom or an electron, leading to a radical amino acid derivative, which is the intermediate of the reaction and (2) the second •OH can abstract another H atom or add itself to the formed radical, rendering the final oxidized products. The studied second attack of •OH is applicable to situations where high concentration of •OH is found, e.g., in vitro. Carbonyls are the best known oxidation products for these reactions. This work includes solvent dielectric and confirmation's effects of the reaction, showing that both are negligible. Overall, the most favored intermediates of the oxidation process at the side chain correspond to the secondary radicals stabilized by hyperconjugation. Intermediates show to be more stable in those cases where the spin density of the unpaired electron is lowered. Alcohols formed at the side chains are the most favored products, followed by the double-bond-containing ones. Interestingly, Arg and Lys side-chain scission leads to the most favored carbonyl-containing oxidation products, in line with experimental results.
Collapse
Affiliation(s)
- Jon Uranga
- Kimika Fakultatea-Chemistry Department , Euskal Herriko Unibertsitatea (UPV/EHU) , P.K. 1072 , 20080 Donostia , Euskadi , Spain.,Donostia International Physics Center (DIPC) , Manuel Lardizabal 4 , 20018 Donostia , Euskadi , Spain
| | - Jon I Mujika
- Donostia International Physics Center (DIPC) , Manuel Lardizabal 4 , 20018 Donostia , Euskadi , Spain
| | - Rafael Grande-Aztatzi
- Donostia International Physics Center (DIPC) , Manuel Lardizabal 4 , 20018 Donostia , Euskadi , Spain
| | - Jon M Matxain
- Kimika Fakultatea-Chemistry Department , Euskal Herriko Unibertsitatea (UPV/EHU) , P.K. 1072 , 20080 Donostia , Euskadi , Spain.,Donostia International Physics Center (DIPC) , Manuel Lardizabal 4 , 20018 Donostia , Euskadi , Spain
| |
Collapse
|
6
|
Uranga J, Lakuntza O, Ramos-Cordoba E, Matxain JM, Mujika JI. A computational study of radical initiated protein backbone homolytic dissociation on all natural amino acids. Phys Chem Chem Phys 2016; 18:30972-30981. [DOI: 10.1039/c6cp06529e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyl radical (˙OH) is known to be one of the most reactive species. The attack of this radical onto the backbone of all natural amino acids is investigated.
Collapse
Affiliation(s)
- Jon Uranga
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Oier Lakuntza
- Institut Catala d'Investigacio Quimica (ICIQ)
- 43007 Tarragona
- Spain
| | - Eloy Ramos-Cordoba
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC)
- 20080 Donostia
- Spain
- Department of Chemistry
| | - Jon M. Matxain
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Jon I. Mujika
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC)
- 20080 Donostia
- Spain
| |
Collapse
|