1
|
Yang Y, Sun M, Wu G, Qi Y, Zhu W, Zhao Y, Zhu Y, Li W, Zhang Y, Wang N, Sheng L, Wang W, Yu X, Yu J, Yao X, Zhou Y. Characteristics of aerosol aminiums over a coastal city in North China: Insights from the divergent impacts of marine and terrestrial influences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170672. [PMID: 38316306 DOI: 10.1016/j.scitotenv.2024.170672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Aminium ions, as crucial alkaline components within fine atmospheric particles, have a notable influence on new particle formation and haze occurrence. Their concentrations within coastal atmosphere depict considerable variation due to the interplay of distinctive marine and terrestrial sources, further complicated by dynamic meteorological conditions. This study conducted a comprehensive examination of aminiums ions concentrations, with a particular focus on methylaminium (MMAH+), dimethylaminium (DMAH+), trimethylaminium (TMAH+), and triethylaminium (TEAH+) within PM2.5, over varying seasons (summer, autumn, and winter of 2019 and summer of 2021), at an urban site in the coastal megacity of Qingdao, Northern China. The investigations revealed that the total concentration of particulate aminium ions (∑Aminium) was 21.6 ± 23.6 ng/m3, exhibiting higher values in the autumn and winter compared to the two summer periods. Considering diurnal variations during autumn and winter, concentrations of particulate aminium ions (excluding TEAH+) exhibited a slight increase during the day compared to night, with a notable peak during the morning hours. However, it was not the case for TEAH+, which was argued to be readily oxidized by ambient oxidants in the afternoon. Additionally, the ∑Aminium within the summer demonstrated markedly elevated levels during the day compared to night, potentially attributed to daytime sea fog associated with sea-land breeze interactions. Positive matrix factorization results indicate terrestrial anthropogenic emissions, including vehicle emission mixed with road dust and primary pollution, as the primary sources of MMAH+ and DMAH+. Conversely, TMAH+ was predominantly emitted from agricultural and marine sources. With the dominance of sea breeze in summer, TMAH+ was identified as a primary marine emission correlated with sea salt, while MMAH+, DMAH+, and TEAH+ were postulated to undergo secondary formation. Furthermore, a notable inverse correlation was observed between TMAH+ and methanesulfonate in PM2.5, consistent with dynamic emissions of sulfur-content and nitrogen-content gases reported in the literature.
Collapse
Affiliation(s)
- Yiyan Yang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Mingge Sun
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Guanru Wu
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yuxuan Qi
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wenqing Zhu
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yunhui Zhao
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenshuai Li
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yanjing Zhang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Nana Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; Jiaozhou Meteorological Bureau, Qingdao Meteorological Bureau, Qingdao 266300, China
| | - Lifang Sheng
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wencai Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Xu Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, 999077, Hong Kong
| | - Jianzhen Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, 999077, Hong Kong; Department of Chemistry, Hong Kong University of Science and Technology, 999077, Hong Kong
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology (MoE), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Zhou
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Zhang Q, Jia S, Chen W, Mao J, Yang L, Krishnan P, Sarkar S, Shao M, Wang X. Contribution of marine biological emissions to gaseous methylamines in the atmosphere: An emission inventory based on multi-source data sets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165285. [PMID: 37414159 DOI: 10.1016/j.scitotenv.2023.165285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Methylamines are a class of highly reactive organic alkaline gases in the atmosphere. At present, the gridded emission inventories of amines used in the atmospheric numerical model is mostly based on the amine/ammonia ratio method and do not consider the air-sea exchange of methylamines, which oversimplifies the emission scenario. Marine biological emissions (MBE), an important source of methylamines, has been insufficiently investigated. These shortcomings in the inventories can limit the simulation of amines by numerical models in the context of compound pollution in China. To acquire a more complete gridded inventory of amines (monomethylamine (MMA), dimethylamines (DMA), and trimethylamines (TMA)), we established a more reasonable MBE inventory of amines by using multi-source data sets (Sea Surface Temperature (SST), Chlorophyll-a (Chla), Sea Surface Salinity (SSS), NH3 column concentration (NH3), and Wind Speed (WS)), and merged it with the anthropogenic emissions (AE) inventory (by adopting the amine/ammonia ratio method and the Multi-resolution Emission Inventory for China (MEIC)). The new methodology can reveal the air-sea exchange fluxes and direction of different amines. Oceans can act as a sink for DMA and source for TMA while it can be either a source or sink for MMA. The concentration of amines above the coastal area increased significantly when the MBE was merged to the AE inventory. TMA and MMA showed significant increases, TMA increased by 43,917.0 %, and 804.0 %, in July 2015 and December 2019, respectively; while MMA increased by 2635.4 % and 0.37 % during the same periods; however, only slight changes were observed in the DMA concentration (-3.9 % in July 2015, and 1.1 % in December 2019). WS, Chla, and the total dissolved concentration of amines ([C+(s)tot]) were found to be the dominant factors affecting MBE fluxes. In addition, the emission fluxes and spatial distribution of AE, and wet deposition also affect the simulation of amines concentration.
Collapse
Affiliation(s)
- Qi Zhang
- Tianjin Academy of Eco-Environmental Sciences, Tianjin 300191, PR China
| | - Shiguo Jia
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou 510275, China.
| | - Weihua Chen
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - Jingying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Liming Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Padmaja Krishnan
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Min Shao
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Doan-Nguyen TP, Crespy D. Advanced density-based methods for the characterization of materials, binding events, and kinetics. Chem Soc Rev 2022; 51:8612-8651. [PMID: 36172819 DOI: 10.1039/d1cs00232e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the densities of chemicals and materials bring valuable insights into the fundamental understanding of matter and processes. Recently, advanced density-based methods have been developed with wide measurement ranges (i.e. 0-23 g cm-3), high resolutions (i.e. 10-6 g cm-3), compatibility with different types of samples and the requirement of extremely low volumes of sample (as low as a single cell). Certain methods, such as magnetic levitation, are inexpensive, portable and user-friendly. Advanced density-based methods are, therefore, beneficially used to obtain absolute density values, composition of mixtures, characteristics of binding events, and kinetics of chemical and biological processes. Herein, the principles and applications of magnetic levitation, acoustic levitation, electrodynamic balance, aqueous multiphase systems, and suspended microchannel resonators for materials science are discussed.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
4
|
Chen D, Yao X, Chan CK, Tian X, Chu Y, Clegg SL, Shen Y, Gao Y, Gao H. Competitive Uptake of Dimethylamine and Trimethylamine against Ammonia on Acidic Particles in Marine Atmospheres. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5430-5439. [PMID: 35435670 DOI: 10.1021/acs.est.1c08713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alkaline gases such as NH3 and amines play important roles in neutralizing acidic particles in the atmosphere. Here, two common gaseous amines (dimethylamine (DMA) and trimethylamine (TMA)), NH3, and their corresponding ions in PM2.5 were measured semicontinuously using an ambient ion monitor-ion chromatography (AIM-IC) system in marine air during a round-trip cruise of approximately 4000 km along the coastline of eastern China. The concentrations of particulate DMA, detected as DMAH+, varied from <4 to 100 ng m-3 and generally decreased with increasing atmospheric NH3 concentrations. Combining observations with thermodynamic equilibrium calculations using the extended aerosol inorganics model (E-AIM) indicated that the competitive uptake of DMA against NH3 on acidic aerosols generally followed thermodynamic equilibria and appeared to be sensitive to DMA/NH3 molar ratios, resulting in molar ratios of DMAH+ to DMA + DMAH+ of 0.31 ± 0.16 (average ± standard deviation) at atmospheric NH3 concentrations over 1.8 μg m-3 (with a corresponding DMA/NH3 ratio of (1.8 ± 1.0) × 10-3), 0.80 ± 0.15 at atmospheric NH3 concentrations below 0.3 μg m-3 (with a corresponding DMA/NH3 ratio of (1.3 ± 0.6) × 10-2), and 0.56 ± 0.19 in the remaining cases. Particulate TMA concentrations, detected as TMAH+, ranged from <2 to 21 ng m-3 and decreased with increasing concentrations of atmospheric NH3. However, TMAH+ was depleted concurrently with the formation of NH4NO3 under low concentrations of atmospheric NH3, contradictory to the calculated increase in the equilibrated concentration of TMAH+ by the E-AIM.
Collapse
Affiliation(s)
- Dihui Chen
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chak Keung Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaomeng Tian
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Yangxi Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Simon Leslie Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Yanjie Shen
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yang Gao
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Observations of Gas-Phase Alkylamines at a Coastal Site in the East Mediterranean Atmosphere. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atmospheric amines are ubiquitous compounds in the atmosphere, having both natural and anthropogenic origin. Recently, they have been identified as important contributors to new particle formation in the atmosphere, but observations of their atmospheric concentrations are scarce. In the present study we introduce the first systematic long-term observations of gas-phase amines measurements in the East Mediterranean atmosphere. Air samples were collected at the Finokalia monitoring station of the University of Crete during a 3.5-year period from January 2013 to July 2016, and analyzed after extraction using a high-performance liquid chromatography triple quadrupole mass spectrometer. The detected alkylamines were the sum of dimethylamine and ethylamine (DMA+EA), trimethylamine (TMA), diethylamine (DEA) and triethylamine (TEA). DMA+EA and TMA were the most abundant alkylamines, with concentrations spanning from the detection limit to 78.0 and 69.8 pptv, and average concentrations of 7.8 ± 12.1 and 7.5 ± 12.4 pptv, respectively. Amines showed pronounced seasonal variability with DMA+EA and TMA concentrations being higher in winter. Statistical analysis of the observations showed different sources for each of the studied amines, except for DMA+ΕA and DEA that appear to have common sources in the region. This analysis points to a marine source of TMA and animal husbandry in the area as a potential source of TEA. None of the alkylamines is correlated with other anthropogenic sources. Furthermore, no clear association was found between the seasonality of NPF events and alkylamines concentrations, while a clear correlation was detected between the seasonality of nucleation mode particle (dp < 25 nm) number concentrations and alkylamine concentrations, indicating that amines may contribute to nucleation mode particles’ production.
Collapse
|
6
|
Ushijima SB, Huynh E, Davis RD, Tolbert MA. Seeded Crystal Growth of Internally Mixed Organic-Inorganic Aerosols: Impact of Organic Phase State. J Phys Chem A 2021; 125:8668-8679. [PMID: 34553594 DOI: 10.1021/acs.jpca.1c04471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atmospheric aerosols are complex with both inorganic and organic components. The soluble inorganics can transition between aqueous and crystalline phases through efflorescence and deliquescence. This study focuses on the efflorescence of (NH4)2SO4/organic particles by seeded crystal growth through contact with a crystal of (NH4)2SO4. Seeded crystal growth is known to effectively shut down supersaturation of aqueous aerosols. Here, we investigate whether organics can inhibit seeded crystal growth. We demonstrate that poly(ethylene glycol) 400 (PEG-400), which phase-separates from the aqueous (NH4)2SO4 and forms a core-shell structure, did not inhibit seeded crystal growth of (NH4)2SO4 at all relative humidity (RH) values below deliquescence RH. The PEG-400 layer was not viscous enough to prevent the diffusion of species through the coating. In contrast, we find that although raffinose, which stays homogeneously mixed with (NH4)2SO4, did not inhibit seeded crystal growth at RH > 45%, it did inhibit heterogeneous efflorescence at lower humidities. Viscosity measurements using an electrodynamic balance show a significant increase in viscosity as humidity was lowered, suggesting that inhibited diffusion of water and ions prevented efflorescence. The observed efflorescence at the higher RH also demonstrates that collisions can induce efflorescence of mixed aerosols that would otherwise not homogeneously effloresce.
Collapse
Affiliation(s)
- Shuichi B Ushijima
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, 216 UCB, Boulder, Colorado 80309, United States
| | - Erik Huynh
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Ryan D Davis
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Margaret A Tolbert
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, 216 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Liang Z, Zhang R, Gen M, Chu Y, Chan CK. Nitrate Photolysis in Mixed Sucrose-Nitrate-Sulfate Particles at Different Relative Humidities. J Phys Chem A 2021; 125:3739-3747. [PMID: 33899478 DOI: 10.1021/acs.jpca.1c00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atmospheric particles can be viscous. The limitation in diffusion impedes the mass transfer of oxidants from the gas phase to the particle phase and hinders multiphase oxidation processes. On the other hand, nitrate photolysis has been found to be effective in producing oxidants such as OH radicals within the particles. Whether nitrate photolysis can effectively proceed in viscous particles and how it may affect the physicochemical properties of the particle have not been much explored. In this study, we investigated particulate nitrate photolysis in mixed sucrose-nitrate-sulfate particles as surrogates of atmospheric viscous particles containing organic and inorganic components as a function of relative humidity (RH) and the molar fraction of sucrose to the total solute (FSU) with an in situ micro-Raman system. Sucrose suppressed nitrate crystallization, and high photolysis rate constants (∼10-5 s-1) were found, irrespective of the RH. For FSU = 0.5 and 0.33 particles under irradiation at 30% RH, we observed morphological changes from droplets to the formation of inclusions and then likely "hollow" semisolid particles, which did not show Raman signal at central locations. Together with the phase states of inorganics indicated by the full width at half-maxima (FWHM), images with bulged surfaces, and size increase of the particles in optical microscopic imaging, we inferred that the hindered diffusion of gaseous products (i.e., NOx, NOy) from nitrate photolysis is a likely reason for the morphological changes. Atmospheric implications of these results are also presented.
Collapse
Affiliation(s)
- Zhancong Liang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, China
| | - Ruifeng Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yangxi Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Cheng C, Chan CK, Lee BP, Gen M, Li M, Yang S, Hao F, Wu C, Cheng P, Wu D, Li L, Huang Z, Gao W, Fu Z, Zhou Z. Single particle diversity and mixing state of carbonaceous aerosols in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142182. [PMID: 33254891 DOI: 10.1016/j.scitotenv.2020.142182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Many field studies have investigated the formation mechanisms of organic aerosol (OA) based on bulk analysis, yet the source and formation process of individual organic particles may be quite different due to the diversity of chemical composition and mixing state in single particles. Here we present the observation results of chemical composition and mixing state of carbonaceous single particles at an urban site in Guangzhou. The carbonaceous particles accounted for 74.6% of the total detected single particles, and were grouped into four types including elemental carbon-aged (EC-aged), elemental and organic carbon (ECOC), organic carbon-rich (OC-rich) and secondary ions-rich (SEC) particles. The formation of EC-aged particles was closely associated with the absorption of organics onto fresh EC particles from primary sources, and the further enrichment of organics in EC-aged particles resulted in the production of ECOC particles. In the daytime OC-rich and SEC particles were mainly produced from the photochemical reactions, while in the nighttime their sharp increases were found along with the enrichment of nitrate and organic nitrogen fragments, suggesting the heterogeneous formation of nitrate and organic nitrogen in OC-rich and SEC particles. The production rates of carbonaceous particles were also investigated in an episodic event, and the EC-aged particles showed the highest production rate compared to the other carbonaceous particles both in the daytime and nighttime, suggesting a significant role of EC in the formation and aging process of carbonaceous particles. The results from this work have revealed different formation processes and production rates of carbonaceous particles due to their diversity in mixing state, providing further insights into the formation mechanisms of OA in field studies.
Collapse
Affiliation(s)
- Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Berto Paul Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Suxia Yang
- Institute for Environment and Climate Research, Jinan University, Guangzhou 510632, China
| | - Feng Hao
- Environmental Monitoring Center of Inner Mongolia Autonomous Region, Hohhot 010011, China
| | - Cheng Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Peng Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Dui Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Wei Gao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhong Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| |
Collapse
|
9
|
Fan X, Dawson J, Chen M, Qiu C, Khalizov A. Thermal Stability of Particle-Phase Monoethanolamine Salts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2409-2417. [PMID: 29368508 DOI: 10.1021/acs.est.7b06367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of monoethanolamine (MEA, 2-hydroxyethanamine) for scrubbing of carbon dioxide from combustion flue gases may become the dominant technology for carbon capture in the near future. The widespread implementation of this technology will result in elevated emissions of MEA to the environment that may increase the loading and modify the properties of atmospheric aerosols. We have utilized experimental measurements together with aerosol microphysics calculations to derive thermodynamic properties of several MEA salts, potentially the dominant forms of MEA in atmospheric particles. The stability of the salts was found to depend strongly on the chemical nature of the acid counterpart. The saturation vapor pressures and vaporization enthalpies obtained in this study can be used to evaluate the role of MEA in the aerosol and haze formation, helping to assess impacts of the MEA-based carbon capture technology on air quality and climate change.
Collapse
Affiliation(s)
- Xiaolong Fan
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing, 210044, China
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Joseph Dawson
- Department of Chemistry and Industrial Hygiene, University of North Alabama , Florence, Alabama 35632, United States
| | - Mindong Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing, 210044, China
| | - Chong Qiu
- Department of Chemistry and Chemical Engineering, University of New Haven , New Haven, Connecticut 06516, United States
| | - Alexei Khalizov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Schwarz J, Makeš O, Ondráček J, Cusack M, Talbot N, Vodička P, Kubelová L, Ždímal V. Single Usage of a Kitchen Degreaser Can Alter Indoor Aerosol Composition for Days. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5907-5912. [PMID: 28447452 DOI: 10.1021/acs.est.6b06050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To the best of our knowledge, this study represents the first observation of multiday persistence of an indoor aerosol transformation linked to a kitchen degreaser containing monoethanol amine (MEA). MEA remaining on the cleaned surfaces and on a wiping paper towel in a trash can was able to transform ammonium sulfate and ammonium nitrate into (MEA)2SO4 and (MEA)NO3. This influence persisted for at least 60 h despite a high average ventilation rate. The influence was observed using both offline (filters, impactors, and ion chromatography analysis) and online (compact time-of-flight aerosol mass spectrometer) techniques. Substitution of ammonia in ammonium salts was observed not only in aerosol but also in particles deposited on a filter before the release of MEA. The similar influence of other amines is expected based on literature data. This influence represents a new pathway for MEA exposure of people in an indoor environment. The stabilizing effect on indoor nitrate also causes higher indoor exposure to fine nitrates.
Collapse
Affiliation(s)
- Jaroslav Schwarz
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Otakar Makeš
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Jakub Ondráček
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Michael Cusack
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Nicholas Talbot
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Petr Vodička
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Lucie Kubelová
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Vladimír Ždímal
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| |
Collapse
|