1
|
Guo Z, Du S, Huang W, Zhao W, Han H, Zhao Z, Yan Y, Fan Z, Shi R, Xie H, Jiang L. Observation of the interaction between Au- and CO2 in Au(CO2)n- anions: Physisorption as the dominant mechanism. J Chem Phys 2025; 162:174310. [PMID: 40314275 DOI: 10.1063/5.0265399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
In this study, we investigated the structure and bonding of Au(CO2)n- (n = 2, 3) using photoelectron spectroscopy analysis, quantum chemical calculations, and weak interaction analysis. Quantum chemical calculations revealed that the geometries of the physisorbed structures closely aligned with experimental data, suggesting that these configurations were the most stable under the experimental conditions. Conversely, while chemisorbed structures exhibit stronger interactions and considerable CO2 activation, they show less agreement with the observed spectroscopic data. Using the interaction region indicator method, our weak interaction analysis confirmed that van der Waals forces were the dominant interaction in the physisorbed structures. Our experimental results indicate that these physically adsorbed structures are more stable under the conditions of this study. These findings shed light on the interaction mechanisms of Au(CO2)n- (n = 2, 3) at the molecular level and provide new insights into the potential for transition metals to catalytically activate CO2.
Collapse
Affiliation(s)
- Zonghui Guo
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
| | - Shihu Du
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Huang
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
| | - Wenbao Zhao
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
| | - Haiyan Han
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
| | - Zhi Zhao
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongliang Yan
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
| | - Zhihui Fan
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
| | - Ruili Shi
- School of Mathematics and Physics Science and Engineering, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei University of Engineering, Handan 056038, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Watson PD, Meizyte G, Pearcy PAJ, Brewer EI, Green AE, Stace AJ, Mackenzie SR. Infrared Photodissociation Spectroscopy of Cationic Nitric Oxide Clusters, [(NO) n] +, and [NO 2(NO) n] . J Phys Chem A 2025; 129:3867-3875. [PMID: 40258304 DOI: 10.1021/acs.jpca.5c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Photofragmentation spectroscopy provides a powerful method for the determination of structures and bonding in isolated gas-phase clusters. Here we report infrared action spectra of mass-selected cationic nitric oxide clusters, (NO)n+ (n = 3-8), and mixed NO2(NO)n+ clusters which are interpreted with the help of quantum chemical calculations. Despite the rich potential energy landscape which exhibits very many calculated low-energy isomers, clear structural motifs are observed. Important differences between our (NO)n+ spectra and others published previously are interpreted in terms of the qualitatively different experimental techniques employed in the initial formation of the clusters in each study. Finally, spectra recorded in different fragmentation channels provide clear evidence for intracluster chemistry leading to the formation of mixed nitrous oxide/nitrogen dioxide/nitric oxide complexes, (N2O)(NO2)(NO)n+.
Collapse
Affiliation(s)
- Peter D Watson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Gabriele Meizyte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Philip A J Pearcy
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward I Brewer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Alice E Green
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Anthony J Stace
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Stuart R Mackenzie
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
3
|
Yan D, Ma Y, Liu J, Xu A, Song F, Zhou T, Yuan Z, Liu X, Wang F. Gas-Phase Scattering of Transition Metal Atoms Fe, Ir, and Pt with CH 4, O 2, and CO 2. J Phys Chem A 2025; 129:978-984. [PMID: 39823280 DOI: 10.1021/acs.jpca.4c06642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Understanding the interactions between transition metal atoms and molecules is important for the study of various related chemical and physical processes. In this study, we have investigated collisions between iron (Fe), iridium (Ir), and platinum (Pt) and the small molecules CH4, O2, and CO2 using a crossed-beam and time-sliced ion velocity map imaging technique. Elastic collisions were observed in all cases, except for collisions of Pt with O2 and CO2. Collisions of Fe or Ir with CH4, O2, and CO2 show mainly long-range attractive potentials at large impact parameters leading to forward scattering, whereas sideways and backward scatterings indicate the formation of short-lived complexes with lifetimes comparable to their rotational periods. In collisions of Pt with O2 and CO2, Pt may react with the gases and become chemically bound to them, which can deplete the nonreactive scattering signal. The insights gained from this study provide a foundation for improved understanding of the complex interactions between transitional metal atoms and other molecules.
Collapse
Affiliation(s)
- Dong Yan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Yujie Ma
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Jiaxing Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Ang Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Fei Song
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Ti Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Zihan Yuan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Xiyu Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Fengyan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Solymos K, Kanász E, Ágoston Á, Gyulavári T, Pálffy B, Szamosvölgyi Á, Kukovecz Á, Kónya Z, Pap Z. Impact of different soil solutions on the stability and photocatalytic activity of commercial zinc oxide nanoparticles. ENVIRONMENTAL SCIENCE: NANO 2025; 12:1328-1339. [DOI: 10.1039/d4en00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Regardless of changes of ZnO NPs after interaction with the soil solutions, it remains active!
Collapse
Affiliation(s)
- Karolina Solymos
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem Str. 2–6, Szeged, HU-6722, Hungary
| | - Eszter Kanász
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
| | - Áron Ágoston
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
- Department of Physical Chemistry and Materials Sciences, University of Szeged, Rerrich B. Sqr.1, Szeged, HU-6720, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
| | - Benjámin Pálffy
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem Str. 2–6, Szeged, HU-6722, Hungary
| | - Ákos Szamosvölgyi
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, Szeged, HU-6720, Hungary
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş–Bolyai University, Treboniu Laurian Str. 42, Cluj-Napoca, RO-400271, Romania
- Institute of Research-Development-Innovation in Applied Natural Sciences, Babeş–Bolyai University, Treboniu Laurian Str. 42, Cluj-Napoca, RO-400271, Romania
| |
Collapse
|
5
|
Reider AM, Szalay M, Reichegger J, Barabás J, Schmidt M, Kappe M, Höltzl T, Scheier P, Lushchikova OV. Spectroscopic investigation of size-dependent CO 2 binding on cationic copper clusters: analysis of the CO 2 asymmetric stretch. Phys Chem Chem Phys 2024; 26:20355-20364. [PMID: 39015096 PMCID: PMC11290062 DOI: 10.1039/d4cp01797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Photofragmentation spectroscopy, combined with quantum chemical computations, was employed to investigate the position of the asymmetric CO2 stretch in cold, He-tagged Cun[CO2]+ (n = 1-10) and Cun[CO2][H2O]+ (n = 1-7) complexes. A blue shift in the band position was observed compared to the free CO2 molecule for Cun[CO2]+ complexes. Furthermore, this shift was found to exhibit a notable dependence on cluster size, progressively redshifting with increasing cluster size. The computations revealed that the CO2 binding energy is the highest for Cu+ and continuously decreases with increasing cluster size. This dependency could be explained by highlighting the role of polarization in electronic structure, according to energy decomposition analysis. The introduction of water to this complex amplified the redshift of the asymmetric stretch, showing a similar dependency on the cluster size as observed for Cun[CO2]+ complexes.
Collapse
Affiliation(s)
- A M Reider
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Szalay
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - J Reichegger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - J Barabás
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
| | - M Schmidt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Kappe
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - T Höltzl
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - P Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - O V Lushchikova
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| |
Collapse
|
6
|
Watson PD, Meizyte G, Pearcy PAJ, Brewer EI, Green AE, Robertson C, Paterson MJ, Mackenzie SR. Infrared spectra and fragmentation dynamics of isotopologue-selective mixed-ligand complexes. Phys Chem Chem Phys 2024; 26:16589-16596. [PMID: 38814318 DOI: 10.1039/d4cp00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Isolated mixed-ligand complexes provide tractable model systems in which to study competitive and cooperative binding effects as well as controlled energy flow. Here, we report spectroscopic and isotopologue-selective infrared photofragmentation dynamics of mixed gas-phase Au(12/13CO)n(N2O)m+ complexes. The rich infrared action spectra, which are reproduced well using simulations of calculated lowest energy structures, clarify previous ambiguities in the assignment of vibrational bands, especially accidental coincidence of CO and N2O bands. The fragmentation dynamics exhibit the same unexpected behaviour as reported previously in which, once CO loss channels are energetically accessible, these dominate the fragmentation branching ratios, despite the much lower binding energy of N2O. We have investigated the dynamics computationally by considering anharmonic couplings between a relevant subset of normal modes involving both ligand stretch and intermolecular modes. Discrepancies between correlated and uncorrelated model fit to the ab initio potential energy curves are quantified using a Boltzmann sampled root mean squared deviation providing insight into efficiency of vibrational energy transfer between high frequency ligand stretches and the softer intermolecular modes which break during fragmentation.
Collapse
Affiliation(s)
- Peter D Watson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Philip A J Pearcy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Edward I Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Christopher Robertson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Martin J Paterson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
7
|
Solymos K, Babcsányi I, Ariya B, Gyulavári T, Ágoston Á, Kukovecz Á, Kónya Z, Pap Z. Environmental significance of the interaction between titanium dioxides and soil solutions. ENVIRONMENTAL SCIENCES EUROPE 2024; 36:85. [DOI: 10.1186/s12302-024-00903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/07/2024] [Indexed: 01/18/2025]
Abstract
AbstractNanotechnology, especially in the field of photocatalysis, has witnessed rapid advancements, with titanium dioxide being one of the most widely used photocatalysts. As the use of products containing photoactive nanomaterials increases, concerns have arisen regarding their potential release into the environment over time. This release can impact soil, groundwater, and surrounding ecosystems, resulting in nanoparticles being dispersed in water and eventually depleted from the system. This study aimed to investigate how different soil solutions affect the structural, textural properties, and photocatalytic activity of titanium dioxide-based, commercial reference Evonik Aeroxide P25. The Regosol soil solution, characterized by acidic pH, low ionic content, and high organic matter content, induced nanoparticle aggregation and bandgap changes. In addition, the acidic pH hindered the adsorption process, potentially affecting the photocatalytic processes. In contrast, the Chernozem soil solution, with slightly alkaline pH, high ionic content, and low organic matter content, did not significantly alter the morphology or structure of the material. However, various organic compounds were absorbed on the surface, reducing the availability of active sites. The study highlights the importance of understanding the influence of soil solutions on nanomaterials, as it impacts their properties and environmental risks. Results show that the material is still activated, i.e., it can exert its photoactive effect on the environment. This sheds light on the challenges posed by nanoparticles in soil, particularly in terms of their toxicity and consequences for the surrounding ecosystems. The study underlines the need for further research in this area to assess potential risks and optimise the use of nanomaterials in environmental remediation.
Collapse
|
8
|
Yang Y, Wang G, Zhou M. Infrared Spectroscopy of [M(CO 2) n] + (M = Ca, Sr, and Ba; n = 1-4) in the Gas Phase: Solvation-Induced Electron Transfer and Activation of CO 2. J Phys Chem A 2024; 128:618-625. [PMID: 38198125 DOI: 10.1021/acs.jpca.3c08034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cationic complexes of heavy alkaline earth metal and carbon dioxide [M(CO2)n]+ (M = Ca, Sr, and Ba) are produced by a laser vaporization-supersonic expansion ion source in the gas phase and are studied by infrared photodissociation spectroscopy in conjunction with quantum chemistry calculations. For the n = 1 complexes, the metal-ligand binding arises primarily from the electrostatic interaction with the CO2 ligand bound to the metal (+I) center in an end-on η1-O fashion. The more highly coordinated complexes [M(CO2)n]+ with n ≥ 2 are characterized to involve a [M2+(CO2-)] core ion with the CO2- ligand bound to the metal (+II) center in a bidentate η2-O, O manner. The activation of CO2 in forming a bent CO2- moiety occurs via solvation-induced metal cation-ligand electron transfer reactions. Bonding analyses reveal that the attractive forces between M2+ and CO2- in the core cation come mainly from electrostatic attraction, but the contribution of covalent orbital interactions should not be underestimated. The atomic orbitals of metal dications that are engaged in the orbital interactions are ns and (n - 1)d orbitals.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| |
Collapse
|
9
|
Han J, Liu P, Qiu B, Wang G, Liu S, Zhou X. Observation of inserted oxocarbonyl species in the tantalum cation-mediated activation of carbon dioxide dictated by two-state reactivity. Dalton Trans 2023; 53:171-179. [PMID: 38018569 DOI: 10.1039/d3dt03593j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Reductive activation of carbon dioxide (CO2) has drawn increasing attention as an effective and convenient method to unlock this stable molecule, especially via transition metal-catalyzed reactions. Taking the [TaC4O8]+ ion-molecule complex formed in the laser ablation source as a representative, the reactivity of the tantalum metal cation towards CO2 molecules is explored using infrared photodissociation spectroscopy combined with quantum chemical calculations. The strong absorption in the carbonyl stretching region provides solid evidence for the insertion reactions into CO bonds by the tantalum cation. Two inserted oxocarbonyl products are identified based on the great agreement between the experimental results and simulated infrared spectra of energetically low-lying structures in the singlet and triplet states. The pivotal role of two-state reactivity in driving CO2 activation among three different spin states is rationalized by potential energy surface analysis. Our conclusion provides valuable insight into the intrinsic mechanisms of CO2 activation by the tantalum metal cation, highlighting the affinity of tantalum for CO bond insertion in addition to typical "end-on" binding configurations.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Guanjun Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Liu P, Han J, Chen Y, Lu S, Su Q, Zhou X, Zhang W. Carbon dioxide activation by discandium dioxide cations in the gas phase: a combined investigation of infrared photodissociation spectroscopy and DFT calculations. Phys Chem Chem Phys 2023. [PMID: 38048053 DOI: 10.1039/d3cp04995g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We present a combined computational and experimental study of CO2 activation at the Sc2O2+ metal oxide ion center in the gas phase. Density functional theory calculations on the structures of [Sc2O2(CO2)n]+ (n = 1-4) ion-molecule complexes reveal a typical end-on binding motif as well as bidentate and tridentate carbonate-containing configurations. As the number of attached CO2 molecules increases, activated forms tend to dominate the isomeric populations. Distortion energies are unveiled to account for the conversion barriers from molecularly bound isomers to carbonate structures, and show a monotonically decreasing trend with successive CO2 ligand addition. The infrared photodissociation spectra of target ion-molecule complexes were recorded in the 2100-2500 cm-1 frequency region and interpreted by comparison with simulated IR spectra of low-lying isomers representing distinct configurations, demonstrating a high possibility of carbonate structure formation in current experiments.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shun Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Quyan Su
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
11
|
Meizyte G, Brown RH, Brewer EI, Watson PD, Mackenzie SR. A Combined Infrared and Computational Study of Gas-Phase Mixed-Ligand Rhodium Complexes: Rh(CO) n(N 2O) m+ ( n = 1-5, m = 1-4). J Phys Chem A 2023; 127:9220-9228. [PMID: 37906705 PMCID: PMC10641848 DOI: 10.1021/acs.jpca.3c05078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
In this study, mixed carbonyl and nitrous oxide complexes with Rh+ were studied by mass-selective infrared photodissociation spectroscopy in a molecular beam. The infrared spectra, recorded in the region of the CO and N2O N═N stretches, were assigned and interpreted with the aid of simulated spectra of low-energy structural isomers. Clear evidence of an inner coordination shell of four ligands is observed. The observed vibrational structure can be understood on the basis of local mode vibrations in the two ligands. However, there is also evidence of multiple low-lying isomers and cooperative binding effects between the two ligands. In particular, σ donation from directly coordinated nitrous oxide ligands drives more classical carbonyl bonding than has been observed in pure carbonyl complexes. The observed fragmentation branching ratios following resonant infrared absorption are explained by simple statistical and energetic arguments, providing a contrast with those of equivalent Au+ complexes.
Collapse
Affiliation(s)
- Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Rachael H. Brown
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Edward I. Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Peter D. Watson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Stuart R. Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| |
Collapse
|
12
|
Milešević D, Popat D, Gellersen P, Liu Z, Stimson J, Robertson P, Green A, Vallance C. Design and characterization of an optical-fiber-coupled laser-induced desorption source for gas-phase dynamics experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:114105. [PMID: 37987631 DOI: 10.1063/5.0170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Preparation of neutral non-volatile molecules intact in the gas phase for mass spectrometry or chemical dynamics experiments remains a challenge for many classes of molecules. Here, we report the design and characterization of a fiber-coupled laser-based thermal desorption source capable of preparing intact neutral molecules at high molecular densities in the gas phase for use in velocity-map imaging experiments. Within this source, the sample is deposited onto a thin tantalum foil. Irradiation of the foil from the reverse side by a focused laser beam leads to highly localized heating of the sample, resulting in desorption of a plume of molecules into the gas phase. The fiber-coupled design simplifies the alignment of the desorption laser beam, and the ability to rotate the foil relative to the fixed laser beam allows the sample to be continually refreshed under vacuum. We use 118 nm photoionization of three test molecules-uracil, adenine, and phenylalanine-to characterize the source and to demonstrate various aspects of its performance. These include the dependence of the velocity-map imaging performance on the size of the interaction region and the dependence of the laser-induced desorption source emission on desorption laser power and heating time. Signal levels recorded in these measurements are comparable to those we typically obtain in similar experiments using a pulsed supersonic molecular beam, and we, therefore, believe that the source has considerable potential for use in a wide range of chemical dynamics and other experiments.
Collapse
Affiliation(s)
- Dennis Milešević
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Divya Popat
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Paul Gellersen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Zhihao Liu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Joseph Stimson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Patrick Robertson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Andrew Green
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| |
Collapse
|
13
|
Otvagina KV, Maslov AA, Fukina DG, Petukhov AN, Malysheva YB, Vorotyntsev AV, Sazanova TS, Atlaskin AA, Kapinos AA, Barysheva AV, Suvorov SS, Zanozin ID, Dokin ES, Vorotyntsev IV, Kazarina OV. The Influence of Polycation and Counter-Anion Nature on the Properties of Poly(ionic liquid)-Based Membranes for CO 2 Separation. MEMBRANES 2023; 13:539. [PMID: 37367743 DOI: 10.3390/membranes13060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
The current investigation is focused on the development of composite membranes based on polymeric ionic liquids (PILs) containing imidazolium and pyridinium polycations with various counterions, including hexafluorophosphate, tetrafluoroborate, and bis(trifluoromethylsulfonyl)imide. A combination of spectroscopic methods was used to identify the synthesized PILs and characterize their interaction with carbon dioxide. The density and surface free energy of polymers were performed by wettability measurements, and the results are in good agreement with the permeability and selectivity obtained within the gas transport tests. It was shown that the membranes with a selective layer based on PILs exhibit relatively high permeability with CO2 and high ideal selectivity CO2/CH4 and CO2/N2. Additionally, it was found that the type of an anion significantly affects the performance of the obtained membranes, with the most pronounced effect from bis-triflimide-based polymers, showing the highest permeability coefficient. These results provide valuable insights into the design and optimization of PIL-based membranes for natural and flue gas treatment.
Collapse
Affiliation(s)
- Ksenia V Otvagina
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Alexey A Maslov
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Diana G Fukina
- Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Anton N Petukhov
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
- Laboratory of SMART Polymeric Materials and Technologies, Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Yulia B Malysheva
- Organic Chemistry Department, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Andrey V Vorotyntsev
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Tatyana S Sazanova
- Laboratory of SMART Polymeric Materials and Technologies, Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia
- Laboratory of Ionic Materials, Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Artem A Atlaskin
- Laboratory of SMART Polymeric Materials and Technologies, Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A Kapinos
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Alexandra V Barysheva
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Sergey S Suvorov
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Ivan D Zanozin
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Egor S Dokin
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Ilya V Vorotyntsev
- Laboratory of SMART Polymeric Materials and Technologies, Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Olga V Kazarina
- Chemical Engineering Laboratory, Research Institute for Chemistry, N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia
- Laboratory of Ionic Materials, Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|
14
|
Han J, Yang Y, Qiu B, Liu P, Wu X, Wang G, Liu S, Zhou X. Infrared photodissociation spectroscopy of mass-selected [TaO 3(CO 2) n] + ( n = 2-5) complexes in the gas phase. Phys Chem Chem Phys 2023; 25:13198-13208. [PMID: 37129869 DOI: 10.1039/d3cp01384g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report a joint experimental and theoretical study on the structures of gas-phase [TaO3(CO2)n]+ (n = 2-5) ion-molecule complexes. Infrared photodissociation spectra of mass-selected [TaO3(CO2)n]+ complexes were recorded in the frequency region from 2200 to 2450 cm-1 and assigned through comparing with the simulated infrared spectra of energetically low-lying structures derived from quantum chemical calculations. With the increasing number of attached CO2 molecules, the larger clusters show significantly enhanced fragmentation efficiency and a strong band appears at around 2350 cm-1 near the free CO2 antisymmetric stretching vibration band, indicating only a small perturbation of CO2 molecules on the secondary solvation sphere while higher frequency bands corresponding to the core structure remain largely unaffected. A core structure [TaO3(CO2)3]+ is identified to which subsequent CO2 ligands are weakly attached and the most favorable cluster growth path is verified to proceed on the triplet potential energy surface higher in energy than that of ground states. Theoretical exploration reveals a two-state reactivity (TSR) scenario in which the energetically favored triplet transition state crosses over the singlet ground state to form a TaO3+ core ion, providing new information on the cluster formation correlated with the reactivity of tantalum metal oxides towards CO2.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yang Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Pengcheng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiangkun Wu
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guanjun Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
15
|
Salzburger M, Saragi RT, Wensink FJ, Cunningham EM, Beyer MK, Bakker JM, Ončák M, van der Linde C. Carbon Dioxide and Water Activation by Niobium Trioxide Anions in the Gas Phase. J Phys Chem A 2023; 127:3402-3411. [PMID: 37040467 PMCID: PMC10123662 DOI: 10.1021/acs.jpca.3c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Transition metals are important in various industrial applications including catalysis. Due to the current concentration of CO2 in the atmosphere, various ways for its capture and utilization are investigated. Here, we study the activation of CO2 and H2O at [NbO3]- in the gas phase using a combination of infrared multiple photon dissociation spectroscopy and density functional theory calculations. In the experiments, Fourier-transform ion cyclotron resonance mass spectrometry is combined with tunable IR laser light provided by the intracavity free-electron laser FELICE or optical parametric oscillator-based table-top laser systems. We present spectra of [NbO3]-, [NbO2(OH)2]-, [NbO2(OH)2]-(H2O) and [NbO(OH)2(CO3)]- in the 240-4000 cm-1 range. The measured spectra and observed dissociation channels together with quantum chemical calculations confirm that upon interaction with a water molecule, [NbO3]- is transformed to [NbO2(OH)2]- via a barrierless reaction. Reaction of this product with CO2 leads to [NbO(OH)2(CO3)]- with the formation of a [CO3] moiety.
Collapse
Affiliation(s)
- Magdalena Salzburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Rizalina T Saragi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Frank J Wensink
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Meizyte G, Pearcy PAJ, Watson PD, Brewer EI, Green AE, Doll M, Duda OA, Mackenzie SR. An Infrared Study of Gas-Phase Metal Nitrosyl Ion-Molecule Complexes. J Phys Chem A 2022; 126:9414-9422. [PMID: 36480929 PMCID: PMC9791661 DOI: 10.1021/acs.jpca.2c07228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a combined experimental and quantum chemical study of gas-phase group 9 metal nitrosyl complexes, M(NO)n+ (M = Co, Rh, Ir). Experimental infrared photodissociation spectra of mass-selected ion-molecule complexes are presented in the region 1600 cm-1 to 2000 cm-1 which includes the NO stretch. These are interpreted by comparison with the simulated spectra of energetically low-lying structures calculated using density functional theory. A mix of linear and nonlinear ligand binding is observed, often within the same complex, and clear evidence of coordination shell closing is observed at n = 4 for Co(NO)n+ and Ir(NO)n+. Calculations of Rh(NO)n+ complexes suggest additional low-lying five-coordinate structures. In all cases, once a second coordination shell is occupied, new spectral features appear which are assigned to (NO)2 dimer moieties. Further evidence of such motifs comes from differences in the spectra recorded in the dissociation channels corresponding to single and double ligand loss.
Collapse
|
17
|
Brewer EI, Green AE, Gentleman AS, Beardsmore PW, Pearcy PAJ, Meizyte G, Pickering J, Mackenzie SR. An infrared study of CO 2 activation by holmium ions, Ho + and HoO . Phys Chem Chem Phys 2022; 24:22716-22723. [PMID: 36106954 DOI: 10.1039/d2cp02862j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a combined experimental and computational study of carbon dioxide activation at gas-phase Ho+ and HoO+ centres. Infrared action spectra of Ho(CO2)n+ and [HoO(CO2)n]+ ion-molecule complexes have been recorded in the spectral region 1700-2400 cm-1 and assigned by comparison with simulated spectra of energetically low-lying structures determined by density functional theory. Little by way of activation is observed in Ho(CO2)n+ complexes with CO2 binding end-on to the Ho+ ion. By contrast, all [HoO(CO2)n]+ complexes n ≥ 3 show unambiguous evidence for formation of a carbonate radical anion moiety, . The signature of this structure, a new vibrational band observed around 1840 cm-1 for n = 3, continues to red-shift monotonically with each successive CO2 ligand binding with net charge transfer from the ligand rather than the metal centre.
Collapse
Affiliation(s)
- Edward I Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alexander S Gentleman
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Peter W Beardsmore
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Philip A J Pearcy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Jack Pickering
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
18
|
Dong X, Wang L, Wang G, Zhou M. Carbon Dioxide Activation by Alkaline-Earth Metals: Formation and Spectroscopic Characterization of OCMCO 3 and MC 2O 4 (M = Ca, Sr, Ba) in Solid Neon. J Phys Chem A 2022; 126:4598-4607. [PMID: 35816036 DOI: 10.1021/acs.jpca.2c02948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of alkaline-earth metal atoms (Ca, Sr, and Ba) with carbon dioxide are investigated using matrix isolation infrared spectroscopy in solid neon. The ground-state metal atoms react with two carbon dioxide molecules to produce the oxalate complexes MC2O4 and the carbonate-carbonyl complexes OCMCO3 (M = Ca, Sr, Ba) spontaneously on annealing. The species are identified by the effects of isotopic substitution on their infrared spectra as well as density functional calculations. Bonding analyses reveal that the attractive forces between M2+ and (CO3)2- or (C2O4)2- in the OCMCO3 and MC2O4 complexes come mainly from electrostatic attraction, but covalent orbital interactions also play an important role, which are dominated by the ligand-to-metal donation bonding. The calcium, strontium, and barium metal centers in these complexes use their ns and predominately (n - 1)d atomic orbitals for covalent bonding that mimic transition metals.
Collapse
Affiliation(s)
- Xuelin Dong
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Guanjun Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Mingfei Zhou
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
19
|
Yang Y, Zhou Y, Jin X, Wang G, Zhou M. Infrared spectroscopy of Be(CO 2) 4+ in the gas phase: electron transfer and C-C coupling of CO 2. Phys Chem Chem Phys 2022; 24:13149-13155. [PMID: 35587654 DOI: 10.1039/d2cp01788a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beryllium-carbon dioxide cation complexes Be(CO2)n+ are produced by a laser vaporization-supersonic expansion ion source in the gas phase. Mass-selected infrared photodissociation spectroscopy supplemented by theoretical calculations confirms that Be(CO2)4+ is a coordination saturated complex that can be assigned to a mixture of two isomers. The first structure involves a bent CO2- ligand that is bound in a monodentate η1-O coordination mode. Another isomer has a metal oxalate-type C2O4- moiety with a C-C hemibond.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yangyu Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Xiaoyang Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
20
|
Lushchikova OV, Szalay M, Tahmasbi H, Juurlink LBF, Meyer J, Höltzl T, Bakker JM. IR spectroscopic characterization of the co-adsorption of CO 2 and H 2 onto cationic Cu n+ clusters. Phys Chem Chem Phys 2021; 23:26661-26673. [PMID: 34709259 PMCID: PMC8653698 DOI: 10.1039/d1cp03119h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
To understand elementary reaction steps in the hydrogenation of CO2 over copper-based catalysts, we experimentally study the adsorption of CO2 and H2 onto cationic Cun+ clusters. For this, we react Cun+ clusters formed by laser ablation with a mixture of H2 and CO2 in a flow tube-type reaction channel and characterize the products formed by IR multiple-photon dissociation spectroscopy employing the IR free-electron laser FELICE. We analyze the spectra by comparing them to literature spectra of Cun+ clusters reacted with H2 and with new spectra of Cun+ clusters reacted with CO2. The latter indicate that CO2 is physisorbed in an end-on configuration when reacted with the clusters alone. Although the spectra for the co-adsorption products evidence H2 dissociation, no signs for CO2 activation or reduction are observed. This lack of reactivity for CO2 is rationalized by density functional theory calculations, which indicate that CO2 dissociation is hindered by a large reaction barrier. CO2 reduction to formate should energetically be possible, but the lack of formate observation is attributed to kinetic hindering.
Collapse
Affiliation(s)
- Olga V Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Máté Szalay
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
| | - Hossein Tahmasbi
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ludo B F Juurlink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Tibor Höltzl
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk utca 28/A 1158, Budapest, Hungary
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Etim UJ, Zhang C, Zhong Z. Impacts of the Catalyst Structures on CO 2 Activation on Catalyst Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3265. [PMID: 34947613 PMCID: PMC8707475 DOI: 10.3390/nano11123265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Utilizing CO2 as a sustainable carbon source to form valuable products requires activating it by active sites on catalyst surfaces. These active sites are usually in or below the nanometer scale. Some metals and metal oxides can catalyze the CO2 transformation reactions. On metal oxide-based catalysts, CO2 transformations are promoted significantly in the presence of surface oxygen vacancies or surface defect sites. Electrons transferable to the neutral CO2 molecule can be enriched on oxygen vacancies, which can also act as CO2 adsorption sites. CO2 activation is also possible without necessarily transferring electrons by tailoring catalytic sites that promote interactions at an appropriate energy level alignment of the catalyst and CO2 molecule. This review discusses CO2 activation on various catalysts, particularly the impacts of various structural factors, such as oxygen vacancies, on CO2 activation.
Collapse
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| | - Chenchen Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| |
Collapse
|
22
|
Dong X, Ding C, Zhang Q, Chen M, Zhao L, Zhou M, Frenking G. Covalent Bonding Between Be + and CO 2 in BeOCO + with a Surprisingly High Antisymmetric OCO Stretching Vibration. J Am Chem Soc 2021; 143:14300-14305. [PMID: 34449204 DOI: 10.1021/jacs.1c06407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cationic complex BeOCO+ is produced in a solid neon matrix. Infrared absorption spectroscopic study shows that it has a very high antisymmetric OCO stretching vibration of 2418.9 cm-1, which is about 71 cm-1 blue-shifted from that of free CO2. The quantum chemical calculations are in very good agreement with the experimental observation. Depending on the theoretical method, a linear or quasi-linear structure is predicted for the cation. The analysis of the electronic structure shows that the bonding of Be+ to one oxygen atom induces very little charge migration between the two moieties, but it causes a significant change in the σ-charge distribution that strengthens the terminal C-O bond, leading to the observed blue shift. The bonding analysis reveals that the Be+ ← OCO donation results in strong binding due to the interference of the wave function and a charge polarization within the CO2 fragment and hybridization to Be+ but only negligible charge donation.
Collapse
Affiliation(s)
- Xuelin Dong
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chengxiang Ding
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qingnan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Mohua Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| |
Collapse
|
23
|
Green AE, Brown RH, Meizyte G, Mackenzie SR. Spectroscopy and Infrared Photofragmentation Dynamics of Mixed Ligand Ion-Molecule Complexes: Au(CO) x(N 2O) y. J Phys Chem A 2021; 125:7266-7277. [PMID: 34433267 DOI: 10.1021/acs.jpca.1c05800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a combined experimental and computational study of the structure and fragmentation dynamics of mixed ligand gas-phase ion-molecule complexes. Specifically, we have studied the infrared spectroscopy and vibrationally induced photofragmentation dynamics of mass-selected Au(CO)x(N2O)y+ complexes. The structures can be understood on the basis of local CO and N2O chromophores in different solvation shells with CO found preferentially in the core. Rich fragmentation dynamics are observed as a function of complex composition and the vibrational mode excited. The dynamics are characterized in terms of branching ratios for different ligand loss channels in light of calculated internal energy distributions. Intramolecular vibrational redistribution appears to be rapid, and dissociation is observed into all energetically accessible channels with little or no evidence for preferential breaking of the weakest intermolecular interactions.
Collapse
Affiliation(s)
- Alice E Green
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Rachael H Brown
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Gabriele Meizyte
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Stuart R Mackenzie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| |
Collapse
|
24
|
Zheng H, Kong X, Wang C, Wang T, Yang D, Li G, Xie H, Zhao Z, Shi R, Han H, Fan H, Yang X, Jiang L. Spectroscopic Identification of Transition-Metal M[η 2-(O,O)C] Species for Highly-Efficient CO 2 Activation. J Phys Chem Lett 2021; 12:472-477. [PMID: 33370117 DOI: 10.1021/acs.jpclett.0c03379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The CO2 activation by transition metals is important in CO2 utilization but has proven to be challenging for experimental targets. Here we report first synthesis and spectroscopic characterization of transition-metal M[η2-(O,O)C] species with bidentate double oxygen metal-CO2 coordination in the [ZrO(CO2)n≥4]+ complexes. The Zr[η2-(O,O)C] species yields a CO2- radical ligand, showing a high efficiency in CO2 activation. We find that two important prerequisites are demanded for certain metals to form this intriguing M[η2-(O,O)C] species. One is that the metal center has high reduction capability, and the other is that the oxidation state of the metal center is lower than its highest one by 1. This study highlights the pivotal roles played by the M[η2-(O,O)C] species in CO2 activation and also open new avenues toward the development of related single-atom catalysts with isolated transition-metal atoms dispersed on supports.
Collapse
Affiliation(s)
- Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi Zhao
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Ruili Shi
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Haiyan Han
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Zhou H, Hui X, Li D, Hu D, Chen X, He X, Gao L, Huang H, Lee C, Mu X. Metal-Organic Framework-Surface-Enhanced Infrared Absorption Platform Enables Simultaneous On-Chip Sensing of Greenhouse Gases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001173. [PMID: 33101855 PMCID: PMC7578855 DOI: 10.1002/advs.202001173] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Indexed: 05/14/2023]
Abstract
Simultaneous on-chip sensing of multiple greenhouse gases in a complex gas environment is highly desirable in industry, agriculture, and meteorology, but remains challenging due to their ultralow concentrations and mutual interference. Porous microstructure and extremely high surface areas in metal-organic frameworks (MOFs) provide both excellent adsorption selectivity and high gases affinity for multigas sensing. Herein, it is described that integrating MOFs into a multiresonant surface-enhanced infrared absorption (SEIRA) platform can overcome the shortcomings of poor selectivity in multigas sensing and enable simultaneous on-chip sensing of greenhouse gases with ultralow concentrations. The strategy leverages the near-field intensity enhancement (over 1500-fold) of multiresonant SEIRA technique and the outstanding gas selectivity and affinity of MOFs. It is experimentally demonstrated that the MOF-SEIRA platform achieves simultaneous on-chip sensing of CO2 and CH4 with fast response time (<60 s), high accuracy (CO2: 1.1%, CH4: 0.4%), small footprint (100 × 100 µm2), and excellent linearity in wide concentration range (0-2.5 × 104 ppm). Additionally, the excellent scalability to detect more gases is explored. This work opens up exciting possibilities for the implementation of all-in-one, real-time, and on-chip multigas detection as well as provides a valuable toolkit for greenhouse gas sensing applications.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| | - Xindan Hui
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| | - Donglin Hu
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| | - Xin Chen
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| | - Xianming He
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| | - Lingxiao Gao
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| | - He Huang
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
- Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering National University of Singapore Singapore 117583 Singapore
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, and International R & D Center of Micro-Nano Systems and New Materials Technology Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
26
|
Green AE, Schaller S, Meizyte G, Rhodes BJ, Kealy SP, Gentleman AS, Schöllkopf W, Fielicke A, Mackenzie SR. Infrared Study of OCS Binding and Size-Selective Reactivity with Gold Clusters, Aun+ (n = 1–10). J Phys Chem A 2020; 124:5389-5401. [DOI: 10.1021/acs.jpca.0c03813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alice E. Green
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Sascha Schaller
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gabriele Meizyte
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Benjamin J. Rhodes
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Sean P. Kealy
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Alexander S. Gentleman
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Stuart R. Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| |
Collapse
|
27
|
|
28
|
Barwa E, Pascher TF, Ončák M, Linde C, Beyer MK. Aktivierung von Kohlenstoffdioxid an Metallzentren: Entwicklung des Ladungstransfers von Mg
.+
auf CO
2
in [MgCO
2
(H
2
O)
n
]
.+
,
n=
0–8. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Christian Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| |
Collapse
|
29
|
Yang D, Su MZ, Zheng HJ, Zhao Z, Kong XT, Li G, Xie H, Zhang WQ, Fan HJ, Jiang L. Infrared spectroscopy of CO 2 transformation by group III metal monoxide cations. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1910175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-zhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-tao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-qing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong-jun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
30
|
Barwa E, Pascher TF, Ončák M, van der Linde C, Beyer MK. Carbon Dioxide Activation at Metal Centers: Evolution of Charge Transfer from Mg .+ to CO 2 in [MgCO 2 (H 2 O) n ] .+ , n=0-8. Angew Chem Int Ed Engl 2020; 59:7467-7471. [PMID: 32100953 PMCID: PMC7217156 DOI: 10.1002/anie.202001292] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 11/06/2022]
Abstract
We investigate activation of carbon dioxide by singly charged hydrated magnesium cations Mg .+(H2O)n, through infrared multiple photon dissociation (IRMPD) spectroscopy combined with quantum chemical calculations. The spectra of [MgCO2(H2O)n].+ in the 1250–4000 cm−1 region show a sharp transition from n=2 to n=3 for the position of the CO2 antisymmetric stretching mode. This is evidence for the activation of CO2 via charge transfer from Mg .+ to CO2 for n≥3, while smaller clusters feature linear CO2 coordinated end‐on to the metal center. Starting with n=5, we see a further conformational change, with CO2.− coordination to Mg2+ gradually shifting from bidentate to monodentate, consistent with preferential hexa‐coordination of Mg2+. Our results reveal in detail how hydration promotes CO2 activation by charge transfer at metal centers.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
31
|
Zimmermann N, Bernhardt TM, Bakker JM, Barnett RN, Landman U, Lang SM. Infrared Spectroscopy of Gas-Phase Mn xO y(CO 2) z+ Complexes. J Phys Chem A 2020; 124:1561-1566. [PMID: 31994885 DOI: 10.1021/acs.jpca.9b11258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of manganese oxide clusters MnxOy+ (x = 2-5, y ≥ x) with CO2 is studied via infrared multiple-photon dissociation spectroscopy (IR-MPD) in the spectral region of 630-1860 cm-1. Along with vibrational modes of the manganese oxide cluster core, two bands are observed around 1200-1450 cm-1 and they are assigned to the characteristic Fermi resonance of CO2 arising from anharmonic coupling between the symmetric stretch vibration and the overtone of the bending mode. The spectral position of the lower frequency band depends on the cluster size and the number of adsorbed CO2 molecules, whereas the higher frequency band is largely unaffected. Despite these effects, the observation of the Fermi dyad indicates only a small perturbation of the CO2 molecule. This finding is confirmed by the theoretical investigation of Mn2O2(CO2)+ revealing only small orbital mixing between the dimanganese oxide cluster and CO2, indicative of mainly electrostatic interaction.
Collapse
Affiliation(s)
- Nina Zimmermann
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| | - Joost M Bakker
- Radboud University , Institute of Molecules and Materials, FELIX Laboratory , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Robert N Barnett
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332-0430 , United States
| | - Uzi Landman
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332-0430 , United States
| | - Sandra M Lang
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| |
Collapse
|
32
|
Barwa E, Ončák M, Pascher TF, Herburger A, van der Linde C, Beyer MK. Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO 2 (H 2 O) n - , n=1-10, in the C-O Stretch Region. Chemistry 2020; 26:1074-1081. [PMID: 31617628 PMCID: PMC7051846 DOI: 10.1002/chem.201904182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Abstract
We investigate anionic [Co,CO2 ,nH2 O]- clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250-2234 cm-1 using an FT-ICR mass spectrometer. We show that both CO2 and H2 O are activated in a significant fraction of the [Co,CO2 ,H2 O]- clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C-O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C-O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2 - . However, calculations find Co(HCOO)(OH)- as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590-1730 cm-1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH)- . Upon additional hydration, all species [Co,CO2 ,nH2 O]- , n≥2, undergo IRMPD through loss of H2 O molecules as a relatively weakly bound messenger. The main spectral features are the C-O stretching mode of the CO ligand around 1900 cm-1 , the water bending mode mixed with the antisymmetric C-O stretching mode of the HCOO- ligand around 1580-1730 cm-1 , and the symmetric C-O stretching mode of the HCOO- ligand around 1300 cm-1 . A weak feature above 2000 cm-1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
33
|
Corral‐Pérez JJ, Billings A, Stoian D, Urakawa A. Continuous Hydrogenation of Carbon Dioxide to Formic Acid and Methyl Formate by a Molecular Iridium Complex Stably Heterogenized on a Covalent Triazine Framework. ChemCatChem 2019. [DOI: 10.1002/cctc.201901179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juan José Corral‐Pérez
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Amelia Billings
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Dragos Stoian
- The Swiss Norwegian Beamlines (SNBL)European Synchrotron Radiation Facility (ESRF) BP 220 38043 Grenoble France
| | - Atsushi Urakawa
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalysis Engineering, Department of Chemical EngineeringDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
34
|
Herburger A, Ončák M, Siu C, Demissie EG, Heller J, Tang WK, Beyer MK. Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO 2 .- (H 2 O) n (n=2-61) in the C-O Stretch Region. Chemistry 2019; 25:10165-10171. [PMID: 31132183 PMCID: PMC6771497 DOI: 10.1002/chem.201901650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 11/08/2022]
Abstract
Understanding the intrinsic properties of the hydrated carbon dioxide radical anions CO2 .- (H2 O)n is relevant for electrochemical carbon dioxide functionalization. CO2 .- (H2 O)n (n=2-61) is investigated by using infrared action spectroscopy in the 1150-2220 cm-1 region in an ICR (ion cyclotron resonance) cell cooled to T=80 K. The spectra show an absorption band around 1280 cm-1 , which is assigned to the symmetric C-O stretching vibration νs . It blueshifts with increasing cluster size, reaching the bulk value, within the experimental linewidth, for n=20. The antisymmetric C-O vibration νas is strongly coupled with the water bending mode ν2 , causing a broad feature at approximately 1650 cm-1 . For larger clusters, an additional broad and weak band appears above 1900 cm-1 similar to bulk water, which is assigned to a combination band of water bending and libration modes. Quantum chemical calculations provide insight into the interaction of CO2 .- with the hydrogen-bonding network.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Chi‐Kit Siu
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Ephrem G. Demissie
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Wai Kit Tang
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
35
|
Yang D, Kong X, Zheng H, Su M, Zhao Z, Xie H, Fan H, Zhang W, Jiang L. Structures and Infrared Spectra of [M(CO 2) 7] + (M = V, Cr, and Mn) Complexes. J Phys Chem A 2019; 123:3703-3708. [PMID: 30957997 DOI: 10.1021/acs.jpca.9b00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase infrared photodissociation spectra of [V(CO2) n]+ complexes revealed three new vibrational bands at 1140, 1800, and 3008 cm-1 at n = 7, the features of which are retained in the larger clusters (Ricks, A. M.; Brathwaite, A. D.; Duncan, M. A. J. Phys. Chem. A 2013, 117, 11490-11498). However, structural assignment of this intriguing feature remains open. Herein, quantum chemical calculations on [V(CO2)7]+ were carried out to identify the structure of the low-lying isomers and to assign the observed spectral features. The comparison of calculated infrared spectra of [V(CO2)7]+ with experimental infrared spectra identified the formation of a bent CO2- species, suggesting the ligand-induced activation of CO2 by the vanadium cation. The structures and infrared spectra of [Cr(CO2)7]+ and [Mn(CO2)7]+ were also predicted and discussed.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Mingzhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|
36
|
Yang D, Su MZ, Zheng HJ, Zhao Z, Li G, Kong XT, Xie H, Fan HJ, Zhang WQ, Jiang L. Infrared photodissociation spectroscopic and theoretical study of [Co(CO2)n]+ clusters. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1902032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-zhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-tao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong-jun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-qing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
37
|
Cunningham EM, Gentleman AS, Beardsmore PW, Mackenzie SR. Infrared spectroscopy of closed s-shell gas-phase M+(N2O)n (M = Li, Al) ion-molecule complexes. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1595202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ethan M. Cunningham
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Alexander S. Gentleman
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Peter W. Beardsmore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Stuart R. Mackenzie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Cunningham EM, Gentleman AS, Beardsmore PW, Mackenzie SR. Structural isomers and low-lying electronic states of gas-phase M+(N2O)n (M = Co, Rh, Ir) ion–molecule complexes. Phys Chem Chem Phys 2019; 21:13959-13967. [DOI: 10.1039/c8cp05995k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures of gas-phase group nine cation–nitrous oxide metal–ligand complexes, M+(N2O)n (M = Co, Rh, Ir; n = 2–7) have been determined by a combination of infrared photodissociation spectroscopy and density functional theory.
Collapse
Affiliation(s)
- Ethan M. Cunningham
- Department of Chemistry
- University of Oxford
- Physical and Theoretical Chemistry Laboratory
- Oxford
- UK
| | - Alexander S. Gentleman
- Department of Chemistry
- University of Oxford
- Physical and Theoretical Chemistry Laboratory
- Oxford
- UK
| | - Peter W. Beardsmore
- Department of Chemistry
- University of Oxford
- Physical and Theoretical Chemistry Laboratory
- Oxford
- UK
| | - Stuart R. Mackenzie
- Department of Chemistry
- University of Oxford
- Physical and Theoretical Chemistry Laboratory
- Oxford
- UK
| |
Collapse
|
39
|
Green AE, Justen J, Schöllkopf W, Gentleman AS, Fielicke A, Mackenzie SR. IR Signature of Size-Selective CO2
Activation on Small Platinum Cluster Anions, Pt
n
−
(n
=4-7). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alice E. Green
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| | - Jasmin Justen
- Institute for Optics and Atomic Physics; Technische Universität Berlin; Hardenbergstrasse 36 10623 Berlin Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg, 4-6 14195 Berlin Germany
| | - Alexander S. Gentleman
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| | - André Fielicke
- Institute for Optics and Atomic Physics; Technische Universität Berlin; Hardenbergstrasse 36 10623 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg, 4-6 14195 Berlin Germany
| | - Stuart R. Mackenzie
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
40
|
Green AE, Justen J, Schöllkopf W, Gentleman AS, Fielicke A, Mackenzie SR. IR Signature of Size-Selective CO 2 Activation on Small Platinum Cluster Anions, Pt n - (n=4-7). Angew Chem Int Ed Engl 2018; 57:14822-14826. [PMID: 30207020 DOI: 10.1002/anie.201809099] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 11/09/2022]
Abstract
Infrared multiple photon dissociation spectroscopy (IR-MPD) has been employed to determine the nature of CO2 binding to size-selected platinum cluster anions, Ptn - (n=4-7). Interpreted in conjunction with density functional theory simulations, the results illustrate that the degree of CO2 activation can be controlled by the size of the metal cluster, with dissociative activation observed on all clusters n≥5. Of potential practical significance, in terms of the use of CO2 as a useful C1 feedstock, CO2 is observed molecularly-bound, but highly activated, on the Pt4 - cluster. It is trapped behind a barrier on the reactive potential energy surface which prevents dissociation.
Collapse
Affiliation(s)
- Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jasmin Justen
- Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, 14195, Berlin, Germany
| | - Alexander S Gentleman
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| | - André Fielicke
- Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, 14195, Berlin, Germany
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
41
|
Sun Y, Sun X, Huang X. Reaction of CO2 with Atomic Transition Metal M+/0/– Ions: A Theoretical Study. J Phys Chem A 2018; 122:5848-5860. [DOI: 10.1021/acs.jpca.8b01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yunhai Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xuri Huang
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| |
Collapse
|
42
|
Dodson LG, Thompson MC, Weber JM. Characterization of Intermediate Oxidation States in CO2Activation. Annu Rev Phys Chem 2018; 69:231-252. [DOI: 10.1146/annurev-physchem-050317-021122] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leah G. Dodson
- JILA and NIST, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - Michael C. Thompson
- JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA;,
| | - J. Mathias Weber
- JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA;,
| |
Collapse
|
43
|
Dodson LG, Thompson MC, Weber JM. Titanium Insertion into CO Bonds in Anionic Ti-CO 2 Complexes. J Phys Chem A 2018; 122:2983-2991. [PMID: 29510624 DOI: 10.1021/acs.jpca.8b01843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the structures of [Ti(CO2) y]- cluster anions using infrared photodissociation spectroscopy and quantum chemistry calculations. The existence of spectral signatures of metal carbonyl CO stretching modes shows that insertion of titanium atoms into C-O bonds represents an important reaction during the formation of these clusters. In addition to carbonyl groups, the infrared spectra show that the titanium center is coordinated to oxalato, carbonato, and oxo ligands, which form along with the metal carbonyls. The presence of a metal oxalato ligand promotes C-O bond insertion in these systems. These results highlight the affinity of titanium for C-O bond insertion processes.
Collapse
|
44
|
Zhao Z, Kong X, Yuan Q, Xie H, Yang D, Zhao J, Fan H, Jiang L. Coordination-induced CO2 fixation into carbonate by metal oxides. Phys Chem Chem Phys 2018; 20:19314-19320. [DOI: 10.1039/c8cp02085j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopic studies reveal how the coordination induces CO2 fixation into carbonate by a cationic yttrium oxide model catalyst.
Collapse
Affiliation(s)
- Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Qinqin Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams
- Dalian University of Technology
- Ministry of Education
- Dalian 116024
- China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
45
|
Gentleman AS, Green AE, Price DR, Cunningham EM, Iskra A, Mackenzie SR. Infrared Spectroscopy of Au +(CH 4) n Complexes and Vibrationally-Enhanced C-H Activation Reactions. Top Catal 2017; 61:81-91. [PMID: 31258301 PMCID: PMC6560929 DOI: 10.1007/s11244-017-0868-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A combined spectroscopic and computational study of gas-phase Au+(CH4)n (n = 3–8) complexes reveals a strongly-bound linear Au+(CH4)2 core structure to which up to four additional ligands bind in a secondary coordination shell. Infrared resonance-enhanced photodissociation spectroscopy in the region of the CH4a1 and t2 fundamental transitions reveals essentially free internal rotation of the core ligands about the H4C–Au+–CH4 axis, with sharp spectral features assigned by comparison with spectral simulations based on density functional theory. In separate experiments, vibrationally-enhanced dehydrogenation is observed when the t2 vibrational normal mode in methane is excited prior to complexation. Clear infrared-induced enhancement is observed in the mass spectrum for peaks corresponding 4u below the mass of the Au+(CH4)n=2,3 complexes corresponding, presumably, to the loss of two H2 molecules.
Collapse
Affiliation(s)
- Alexander S Gentleman
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| | - Alice E Green
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| | - Daniel R Price
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| | - Ethan M Cunningham
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| | - Andreas Iskra
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| | - Stuart R Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| |
Collapse
|
46
|
Munshi M, Craig SM, Berden G, Martens J, DeBlase AF, Foreman DJ, McLuckey SA, Oomens J, Johnson MA. Preparation of Labile Ni +(cyclam) Cations in the Gas Phase Using Electron-Transfer Reduction through Ion-Ion Recombination in an Ion Trap and Structural Characterization with Vibrational Spectroscopy. J Phys Chem Lett 2017; 8:5047-5052. [PMID: 28961009 PMCID: PMC5677246 DOI: 10.1021/acs.jpclett.7b02223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 05/31/2023]
Abstract
Gas-phase ion chemistry methods that capture and characterize the degree of activation of small molecules in the active sites of homogeneous catalysts form a powerful new tool to unravel how ligand environments affect reactivity. A key roadblock in this development, however, is the ability to generate the fragile metal oxidation states that are essential for catalytic activity. Here we demonstrate the preparation of the key Ni(I) center in the widely used cyclam scaffold using ion-ion recombination as a gas-phase alternative to electrochemical reduction. The singly charged Ni+(cyclam) coordination complex is generated by electron transfer from fluoranthene and azobenzene anions to doubly charged Ni2+(cyclam), using the electron-transfer dissociation protocol in a commercial quadrupole ion trap instrument and in a custom-built octopole RF ion trap. The successful preparation of the Ni+(cyclam) cation is verified through analysis of its vibrational spectrum obtained using the infrared free electron laser FELIX.
Collapse
Affiliation(s)
- Musleh
U. Munshi
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
| | - Stephanie M. Craig
- Sterling
Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Giel Berden
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
| | - Andrew F. DeBlase
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Spectral
Energies,
LLC, Beavercreek, Ohio 45430, United States
| | - David J. Foreman
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Scott A. McLuckey
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jos Oomens
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, 1098XH Amsterdam, Science Park 908, The Netherlands
| | - Mark A. Johnson
- Sterling
Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
47
|
Thompson MC, Ramsay J, Weber JM. Interaction of CO2 with Atomic Manganese in the Presence of an Excess Negative Charge Probed by Infrared Spectroscopy of [Mn(CO2)n]− Clusters. J Phys Chem A 2017; 121:7534-7542. [DOI: 10.1021/acs.jpca.7b06870] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael C. Thompson
- JILA and Department of Chemistry
and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Jacob Ramsay
- JILA and Department of Chemistry
and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - J. Mathias Weber
- JILA and Department of Chemistry
and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
48
|
Cunningham EM, Gentleman AS, Beardsmore PW, Iskra A, Mackenzie SR. Infrared Signature of Structural Isomers of Gas–Phase M+(N2O)n (M = Cu, Ag, Au) Ion–Molecule Complexes. J Phys Chem A 2017; 121:7565-7571. [DOI: 10.1021/acs.jpca.7b07628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ethan M. Cunningham
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Alexander S. Gentleman
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Peter W. Beardsmore
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Andreas Iskra
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Stuart R. Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
49
|
Thompson MC, Dodson LG, Weber JM. Structural Motifs of [Fe(CO2)n]− Clusters (n = 3–7). J Phys Chem A 2017; 121:4132-4138. [DOI: 10.1021/acs.jpca.7b02742] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael C. Thompson
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Leah G. Dodson
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J. Mathias Weber
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
50
|
Zhao Z, Kong X, Yang D, Yuan Q, Xie H, Fan H, Zhao J, Jiang L. Reactions of Copper and Silver Cations with Carbon Dioxide: An Infrared Photodissociation Spectroscopic and Theoretical Study. J Phys Chem A 2017; 121:3220-3226. [DOI: 10.1021/acs.jpca.7b01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Zhao
- Key
Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Xiangtao Kong
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qinqin Yuan
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hua Xie
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Hongjun Fan
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Jijun Zhao
- Key
Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
| | - Ling Jiang
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| |
Collapse
|