1
|
Chen X, Li Y, Xie M, Hu Y. Growth mechanism of aromatic prebiotic molecules: insights from different processes of ion-molecule reactions in benzonitrile-ammonia and benzonitrile-methylamine clusters. Phys Chem Chem Phys 2024; 26:21548-21557. [PMID: 39082110 DOI: 10.1039/d4cp01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Benzonitrile (BN, C6H5CN) has been detected in the cold molecular cloud Taurus molecular cloud-1 (TMC-1) in 2018, which is suggested to be a precursor in the formation of more complex nitrogen-containing aromatic interstellar compounds. In this study, we utilized mass-selected infrared (IR) photodissociation spectroscopy and quantum chemical calculations to investigate the structures and gaseous ion-molecule reactions of benzonitrile-ammonia (BN-NH3) and benzonitrile-methylamine (BN-MA) clusters. The spectral observations indicate that the cyclic hydrogen bonding structure predominates in both neutral clusters. After VUV (118 nm) single-photon ionization, a new C-N covalent bond formed between BN and NH3 in the (BN-NH3)+ cluster. However, proton sharing constitutes the primary structure of the (BN-MA)+ cluster. The two nitrogen-containing interstellar molecules react with BN to yield distinct products due to difference in charge distribution and molecular polarity in the ionized clusters. The reactions of BN with other molecules contribute to our understanding of the growth mechanisms of complex interstellar molecules.
Collapse
Affiliation(s)
- Xutao Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yujian Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Huang CI, Feng JY, Lee YP, Ebata T. Structures and Anharmonic Analyses of the O-H Stretching Vibrations of Jet-Cooled Benzoic Acid (BA), (BA)(H 2O) n, and (BA) 2(H 2O) n ( n = 1, 2) Clusters, and Their Ring-Deuterated Isotopologues Measured with IR-VUV Spectroscopy─Unraveling the Complex Anharmonic Couplings in the Cyclic Structures. J Phys Chem A 2023; 127:9550-9563. [PMID: 37930654 DOI: 10.1021/acs.jpca.3c06581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The IR spectra of benzoic acid (BA), (BA)(H2O)n and (BA)2(H2O)n (n = 1, 2) clusters, and their ring-deuterated isotopologues in the 2800-3750 cm-1 region were measured with IR-vacuum ultraviolet spectroscopy under the jet-cooled condition. For (BA)(H2O) and (BA)(H2O)2, only a single isomer was observed for each species, whereas for (BA)2(H2O) and (BA)2(H2O)2, more than one isomers were present. The observed IR spectra were very complex and showed similar structures between (BA)m(H2O)n and their ring-deuterated isotopologues (BA-d5)m(H2O)n for specific values of m and n. The anharmonic analysis based on the vibrational second-order perturbation theory indicated that the complexity of the IR spectra in these clusters was due to the appearance of many bands of (i) the overtone and combination modes involving the O-H bend of H2O and the in-plane C-O-H bends and the C═O stretch of BA, and (ii) the combination modes involving the hydrogen-bonded O-H stretch and low-frequency intermolecular vibrations, with considerable intensities.
Collapse
Affiliation(s)
- Chia-I Huang
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jun-Ying Feng
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Takayuki Ebata
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Huang Q, Matsuda Y, Eguchi R, Fujii A, Kuo J. Understanding Fermi resonances behind the complex vibrational spectra of the methyl groups in simple alcohol, thiol, and their ethers. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qian‐Rui Huang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Yoshiyuki Matsuda
- Department of Chemistry, Graduate School of Science Tohoku University Sendai Japan
| | - Riku Eguchi
- Department of Chemistry, Graduate School of Science Tohoku University Sendai Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science Tohoku University Sendai Japan
| | - Jer‐Lai Kuo
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| |
Collapse
|
4
|
Feng JY, Lee YP, Witek HA, Hsu PJ, Kuo JL, Ebata T. Structures of Pyridine-Water Clusters Studied with Infrared-Vacuum Ultraviolet Spectroscopy. J Phys Chem A 2021; 125:7489-7501. [PMID: 34406765 DOI: 10.1021/acs.jpca.1c05782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The infrared (IR) spectra of the O-H stretching vibrations of pyridine-water clusters (Pyd)m(H2O)n, with m, n = 1-4, have been investigated with infrared-vacuum ultraviolet (VUV) spectroscopy under a jet-cooled condition. The time-of-flight mass spectrum of (Pyd)m(H2O)n+ by VUV ionization at ∼9 eV showed an unusual intensity pattern with very weak ion signals for m = 1 and 2 and stronger signals for m ≥ 3. This unusual mass pattern was explained by a drastic structural change of (Pyd)m(H2O)n upon the VUV ionization, which was followed by the elimination of water molecules. Among the recorded IR spectra, only one spectrum monitored, (Pyd)2+ cation, showed a well-resolved structure. The spectrum was analyzed by comparing with the simulated ones of possible stable isomers of (Pyd)2(H2O)n, which were obtained with quantum-chemical calculations. Most of the calculated (Pyd)2(H2O)n clusters had the characteristic structure in which H2O or (H2O)2 forms a hydrogen-bonded bridge between two pyridines to form the π-stacked (Pyd)2, and an additional H2O molecule(s) extends the H-bonded network. The π-stacked (Pyd)2(H2O)n moiety is very stable and is thought to exist as a local structure in a pyridine/water mixed solution. The Fermi resonance between the O-H stretch fundamentals and the overtones of the O-H bending vibrations in (Pyd)m(H2O)n was found to be less pronounced in the case of (Pyd)m(NH3)n studied previously.
Collapse
Affiliation(s)
- Jun-Ying Feng
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Center for Emergent Functional Matter Sciences, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Henryk A Witek
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Takayuki Ebata
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
5
|
Vibrational study of methylamine dimer and hydrated methylamine complexes in solid neon supported by ab initio calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Huang QR, Endo T, Mishra S, Zhang B, Chen LW, Fujii A, Jiang L, Patwari GN, Matsuda Y, Kuo JL. Understanding Fermi resonances in the complex vibrational spectra of the methyl groups in methylamines. Phys Chem Chem Phys 2021; 23:3739-3747. [PMID: 33533768 DOI: 10.1039/d0cp05745b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vibrational spectra of the methyl groups in mono-methylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA) monomers and their clusters were measured in three experimental set-ups to capture their complex spectral features as a result of bend/umbrella-stretch Fermi resonance (FR). Multiple bands were observed between 2800 and 3000 cm-1 corresponding to the methyl groups for MMA and DMA. On the other hand, the corresponding spectrum of TMA is relatively simple, exhibiting only four prominent bands in the same frequency window, even though TMA has a larger number of methyl groups. The discrete variable representation (DVR) based ab initio anharmonic algorithm with potential energy surface (PES) at CCSD/aug-cc-pVDZ quality is able to capture all the experimentally observed spectral features across all three amines, and the constructed vibrational Hamiltonian was used to analyze the couplings that give rise to the observed FR patterns. It was observed that the vibrational coupling among CH stretch modes on different methyl groups is weak (less than 2 cm-1) and stronger vibrational coupling is found to localize within a methyl group. In MMA and DMA, the complex feature between 2850 and 2950 cm-1 is a consequence of closely packed overtone states that gain intensities by mixing with the stretching modes. The simplification of the spectral pattern of TMA can be understood by the red-shift of the symmetric CH3 stretching modes by about 80 cm-1 relative to MMA, which causes the symmetric CH3 stretch to shift outside the FR window.
Collapse
Affiliation(s)
- Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Tomoya Endo
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan.
| | - Saurabh Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Bingbing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Li-Wei Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan.
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Yoshiyuki Matsuda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan.
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| |
Collapse
|
7
|
Mishra S, Nguyen HQ, Huang QR, Lin CK, Kuo JL, Patwari GN. Vibrational spectroscopic signatures of hydrogen bond induced NH stretch–bend Fermi-resonance in amines: The methylamine clusters and other N–H⋯N hydrogen-bonded complexes. J Chem Phys 2020; 153:194301. [DOI: 10.1063/5.0025778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Saurabh Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ha-Quyen Nguyen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chih-Kai Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - G. Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Feng JY, Lee YP, Zhu CY, Hsu PJ, Kuo JL, Ebata T. IR-VUV spectroscopy of pyridine dimers, trimers and pyridine-ammonia complexes in a supersonic jet. Phys Chem Chem Phys 2020; 22:21520-21534. [PMID: 32955537 DOI: 10.1039/d0cp03197f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The infrared spectra of the C-H stretching vibrations of (pyridine)m, m = 1-3, and the N-H stretching vibrations of (pyridine)m-(NH3)n, m = 1, 2; n = 1-4, complexes were investigated by infrared (IR)-vacuum ultraviolet (VUV) spectroscopy under jet-cooled conditions. The ionization potential (IP0) of the pyridine monomer was determined to be 74 546 cm-1 (9.242 eV), while its complexes showed only smooth curves of the ionization thresholds at ∼9 eV, indicating large structural changes in the ionic form. The pyridine monomer exhibits five main features with several satellite bands in the C-H stretching region at 3000-3200 cm-1. Anharmonic calculations including Fermi-resonance were carried out to analyze the candidates of the overtone and combination bands which can couple to the C-H stretching fundamentals. For (pyridine)2 and (pyridine)3, most C-H bands are blue-shifted by 3-5 cm-1 from those of the monomer. The structures revealed by random searching algorithms with density functional methods indicate that the π-stacked structure is most stable for (pyridine)2, while (pyridine)3 prefers the structures stabilized by dipole-dipole and C-Hπ interactions. For the (pyridine)m-(NH3)n complexes, the mass spectrum exhibited a wide range distribution of the complexes. The observed IR spectra in the N-H stretching vibrations of the complexes showed four main bands in the 3200-3450 cm-1 region. These features are very similar to those of (NH3)n complexes, and the bands are assigned to the anti-symmetric N-H stretching band (ν3), the symmetric N-H stretching (ν1) band, and the first overtone bands of the N-H bending vibrations (2ν4). The anharmonic calculations including the Fermi-resonance between ν1 and 2ν4 well reproduced the observed spectra.
Collapse
Affiliation(s)
- Jun-Ying Feng
- Department of Applied Chemistry and Institute for Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | | | | | | | | | | |
Collapse
|
9
|
Yasumoto R, Matsuda Y, Fujii A. Infrared spectroscopic observation of the McLafferty rearrangement in ionized 2-pentanone. Phys Chem Chem Phys 2020; 22:19230-19237. [DOI: 10.1039/d0cp02602f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The isomerization mechanism of ionized 2-pentanone is investigated by infrared predissociation spectroscopy and theoretical calculations. The observation of OH stretch demonstrates its enolization through the McLafferty rearrangement.
Collapse
Affiliation(s)
- Ryo Yasumoto
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yoshiyuki Matsuda
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
10
|
Guo M, Wu H, Yang M, Luo Z. Acetone Dimer Hydrogenation under Vacuum Ultraviolet: An Intracluster Trimolecular Dissociation Mechanism. J Phys Chem A 2019; 123:10739-10745. [DOI: 10.1021/acs.jpca.9b08833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Jiang S, Kong X, Wang C, Zang X, Su M, Zheng H, Zhang B, Li G, Xie H, Yang X, Liu Z, Liu Z, Jiang L. Infrared Spectroscopy of Hydrogen-Bonding Interactions in Neutral Dimethylamine–Methanol Complexes. J Phys Chem A 2019; 123:10109-10115. [DOI: 10.1021/acs.jpca.9b08630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shukang Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road,
Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiangyu Zang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Mingzhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bingbing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueming Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road,
Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, Shanxi Normal University, No. 1, Gongyuan Street, Linfen 041004, Shanxi, China
| | - Zhifeng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
- CUHK Shenzhen Research Institute, No.10, 2nd Yuexing Road, Nanshan District, Shenzhen 518172, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
12
|
Zhang B, Huang QR, Jiang S, Chen LW, Hsu PJ, Wang C, Hao C, Kong X, Dai D, Yang X, Kuo JL, Jiang L. Infrared spectra of neutral dimethylamine clusters: An infrared-vacuum ultraviolet spectroscopic and anharmonic vibrational calculation study. J Chem Phys 2019; 150:064317. [DOI: 10.1063/1.5086095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Bingbing Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shukang Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, China
| | - Li-Wei Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
13
|
Huang QR, Li YC, Ho KL, Kuo JL. Vibrational spectra of small methylamine clusters accessed by an ab initio anharmonic approach. Phys Chem Chem Phys 2018; 20:7653-7660. [DOI: 10.1039/c8cp00533h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anharmonic vibrational calculations on Methylamine (MMA) clusters suggest that the origin of the complexity between 2800 and 3000 cm–1 is caused by Fermi resonance (FR) between the stretching and bending overtones of the CH3 group. In trimer and tetramer, FR also causes complex spectra pattern in the NH2 group.
Collapse
Affiliation(s)
- Qian-Rui Huang
- Institute of Atomic and Molecular Sciences
- Taipei 10617
- Taiwan
| | - Ying-Cheng Li
- Institute of Atomic and Molecular Sciences
- Taipei 10617
- Taiwan
| | - Kun-Lin Ho
- Institute of Atomic and Molecular Sciences
- Taipei 10617
- Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Taipei 10617
- Taiwan
| |
Collapse
|
14
|
Lei X, Kong X, Zhao Z, Zhang B, Dai D, Yang X, Jiang L. Infrared photodissociation spectroscopy of cold cationic trimethylamine complexes. Phys Chem Chem Phys 2018; 20:25583-25591. [DOI: 10.1039/c8cp03672a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopic studies reveal the general trends in the stepwise growth motif of trimethylamine (TMA)n+ complexes.
Collapse
Affiliation(s)
- Xin Lei
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Bingbing Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
15
|
Mishra S, Kuo JL, Patwari GN. Hydrogen bond induced enhancement of Fermi resonances in N–H⋯N hydrogen bonded complexes of anilines. Phys Chem Chem Phys 2018; 20:21557-21566. [DOI: 10.1039/c8cp02448k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancement of Fermi resonance intensities due to the formation of N–H⋯N hydrogen bonding of anilines with alkyl amines is analyzed using a two-state deperturbation model.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- Mumbai 400 076
- India
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - G. Naresh Patwari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- Mumbai 400 076
- India
| |
Collapse
|
16
|
Zhang BB, Kong XT, Jiang SK, Zhao Z, Xie H, Hao C, Dai DX, Yang XM, Jiang L. Infrared-Vacuum Ultraviolet Spectroscopic and Theoretical Study of Neutral Trimethylamine Dimer. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1711213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bing-bing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-tao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-kang Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Dong-xu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|