1
|
Liu F, Xiao H, Gao Q, Siri D, Bardelang D, Xing Q, Geng J. Tracking host-guest recognition in cells by a BODIPY·CB[7] complex. Chem Commun (Camb) 2025; 61:6675-6678. [PMID: 40200752 DOI: 10.1039/d5cc00663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Interested in host·guest binding events in cellular environments, intracellular recognition between fluorescent BODIPY+ and cucurbit[7]uril was explored for lysosome tracking in living cancer cells. Sequential deaggregation from spontaneously dimerized BODIPY+ was unusually discovered upon complexation with CB[7].
Collapse
Affiliation(s)
- Fengbo Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China.
| | - Haiqi Xiao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China.
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China.
| | - Didier Siri
- Aix-Marseille Universite, CNRS, Institut de Chimie Radicalaire, UMR 7273, 13397 Marseille, France
| | - David Bardelang
- Aix-Marseille Universite, CNRS, Institut de Chimie Radicalaire, UMR 7273, 13397 Marseille, France
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China.
| | - Jing Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China.
| |
Collapse
|
2
|
Tang FK, Tucker L, Nadiveedhi MR, Hladun C, Morse J, Ali M, Payne N, Schmidt M, Leung K. Leveraging Chlorination-Based Mechanism for Resolving Subcellular Hypochlorous Acid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609247. [PMID: 39229205 PMCID: PMC11370599 DOI: 10.1101/2024.08.22.609247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Hypochlorous acid (HOCl) is crucial for pathogen defense, but an imbalance in HOCl levels can lead to tissue damage and inflammation. Existing HOCl indicators employ an oxidation approach, which may not truly reveal the chlorinative stress environment. We designed a suite of indicators with a new chlorination-based mechanism, termed HOClSense dyes, to resolve HOCl in sub-cellular compartments. HOClSense dyes allow the visualization of HOCl with both switch-on and switch-off detection modes with diverse emission colors, as well as a unique redshift in emission. HOClSense features a minimalistic design with impressive sensing performance in terms of HOCl selectivity, and our design also facilitates functionalization through click chemistry for resolving subcellular HOCl. As a proof of concept, we targeted plasma membrane and lysosomes with HOClSense for subcellular HOCl mapping. With utilizing HOClSense, we discovered the STING pathway-induced HOCl production and the abnormal HOCl production in Niemann-Pick diseases. To the best of our knowledge, this is the first chlorination-based HOCl indicator series for resolving subcellular HOCl.
Collapse
Affiliation(s)
- Fung Kit Tang
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| | - Lawrence Tucker
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| | | | - Colby Hladun
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| | - Jared Morse
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| | - Mahnoor Ali
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| | - Noah Payne
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| | - Matthias Schmidt
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| | - Kaho Leung
- Department of Chemistry & Biochemistry, Clarkson University, NY, 13676, United States
| |
Collapse
|
3
|
Zuo H, Wu Q, Guo X, Kang Z, Gao J, Wei Y, Yu C, Jiao L, Hao E. Tuning of Redox Potentials and LUMO Levels of BODIPYs via Site-Selective Direct Cyanation. Org Lett 2023; 25:8150-8155. [PMID: 37921615 DOI: 10.1021/acs.orglett.3c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Through a strong oxidant Pb(OAc)4 promoted oxidative nucleophilic hydrogen substitution, site-selective direct and stepwise cyanation of BODIPYs using tetrabutylammonium cyanide was developed to give α-cyanated BODIPY derivatives. Characterization of optical and electrochemical properties of these dyes provides substantial enhancement of the electron affinity, with a reduction potential and LUMO level as low as -0.04 V and -4.43 eV, respectively. Radical anions of these electron-deficient 3,5-dicyanated BODIPYs were characterized by absorption and EPR spectroscopy.
Collapse
Affiliation(s)
- Huiquan Zuo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Wei
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
4
|
Ndung’U C, Bobadova-Parvanova P, LaMaster DJ, Goliber D, Fronczek FR, Vicente MDGH. 8( meso)-Pyridyl-BODIPYs: Effects of 2,6-Substitution with Electron-Withdrawing Nitro, Chloro, and Methoxycarbonyl Groups. Molecules 2023; 28:4581. [PMID: 37375136 PMCID: PMC10303842 DOI: 10.3390/molecules28124581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The introduction of electron-withdrawing groups on 8(meso)-pyridyl-BODIPYs tends to increase the fluorescence quantum yields of this type of compound due to the decrease in electronic charge density on the BODIPY core. A new series of 8(meso)-pyridyl-BODIPYs bearing a 2-, 3-, or 4-pyridyl group was synthesized and functionalized with nitro and chlorine groups at the 2,6-positions. The 2,6-methoxycarbonyl-8-pyridyl-BODIPYs analogs were also synthesized by condensation of 2,4-dimethyl-3-methoxycarbonyl-pyrrole with 2-, 3-, or 4-formylpyridine followed by oxidation and boron complexation. The structures and spectroscopic properties of the new series of 8(meso)-pyridyl-BODIPYs were investigated both experimentally and computationally. The BODIPYs bearing 2,6-methoxycarbonyl groups showed enhanced relative fluorescence quantum yields in polar organic solvents due to their electron-withdrawing effect. However, the introduction of a single nitro group significantly quenched the fluorescence of the BODIPYs and caused hypsochromic shifts in the absorption and emission bands. The introduction of a chloro substituent partially restored the fluorescence of the mono-nitro-BODIPYs and induced significant bathochromic shifts.
Collapse
Affiliation(s)
- Caroline Ndung’U
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| | - Petia Bobadova-Parvanova
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA; (P.B.-P.); (D.G.)
| | - Daniel J. LaMaster
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| | - Dylan Goliber
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA; (P.B.-P.); (D.G.)
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| | - Maria da Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| |
Collapse
|
5
|
Ndung’u C, LaMaster DJ, Dhingra S, Mitchell NH, Bobadova-Parvanova P, Fronczek FR, Elgrishi N, Vicente MDGH. A Comparison of the Photophysical, Electrochemical and Cytotoxic Properties of meso-(2-, 3- and 4-Pyridyl)-BODIPYs and Their Derivatives. SENSORS (BASEL, SWITZERLAND) 2022; 22:5121. [PMID: 35890801 PMCID: PMC9315496 DOI: 10.3390/s22145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Boron dipyrromethene (BODIPY) dyes bearing a pyridyl moiety have been used as metal ion sensors, pH sensors, fluorescence probes, and as sensitizers for phototherapy. A comparative study of the properties of the three structural isomers of meso-pyridyl-BODIPYs, their 2,6-dichloro derivatives, and their corresponding methylated cationic pyridinium-BODIPYs was conducted using spectroscopic and electrochemical methods, X-ray analyses, and TD-DFT calculations. Among the neutral derivatives, the 3Py and 4Py isomers showed the highest relative fluorescence quantum yields in organic solvents, which were further enhanced 2-4-fold via the introduction of two chlorines at the 2,6-positions. Among the cationic derivatives, the 2catPy showed the highest relative fluorescence quantum yield in organic solvents, which was further enhanced by the use of a bulky counter anion (PF6-). In water, the quantum yields were greatly reduced for all three isomers but were shown to be enhanced upon introduction of 2,6-dichloro groups. Our results indicate that 2,6-dichloro-meso-(2- and 3-pyridinium)-BODIPYs are the most promising for sensing applications. Furthermore, all pyridinium BODIPYs are highly water-soluble and display low cytotoxicity towards human HEp2 cells.
Collapse
Affiliation(s)
- Caroline Ndung’u
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Daniel J. LaMaster
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Simran Dhingra
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Nathan H. Mitchell
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Petia Bobadova-Parvanova
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA;
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Maria da Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| |
Collapse
|
6
|
Zhou Z, Maki T. Ratiometric Fluorescence Acid Probes Based on a Tetrad Structure Including a Single BODIPY Chromophore. J Org Chem 2021; 86:17560-17566. [PMID: 34610242 DOI: 10.1021/acs.joc.1c01328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of tetrad BODIPY derivatives were synthesized. Each molecule was shown to contain phenyl groups at the 1- and 7-positions and a pyridyl or quinolyl group at the 8-position of the BODIPY chromophore. They exhibited fluorescence shifts in the presence of acids. These results imply the importance of controlled conjugation as well as shielding of the meso-substituent from solvents to achieve fluorescence shifts and efficiency through a tetrad structure including a single boron dipyrromethenes (BODIPY) chromophore.
Collapse
Affiliation(s)
- Zheyang Zhou
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Toshihide Maki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
7
|
Li H, Lv F, Guo X, Wu Q, Wu H, Tang B, Yu C, Wang H, Jiao L, Hao E. Direct C–H alkoxylation of BODIPY dyes via cation radical accelerated oxidative nucleophilic hydrogen substitution: a new route to building blocks for functionalized BODIPYs. Chem Commun (Camb) 2021; 57:1647-1650. [DOI: 10.1039/d0cc07961h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient C–H alkoxylation reaction between BODIPY dyes and a variety of alcohols was developed via a cation radical accelerated oxidative nucleophilic hydrogen substitution.
Collapse
|
8
|
Zatsikha Y, Shamova LI, Schaffner JW, Healy AT, Blesener TS, Cohen G, Wozniak B, Blank DA, Nemykin VN. Probing Electronic Communication and Excited-State Dynamics in the Unprecedented Ferrocene-Containing Zinc MB-DIPY. ACS OMEGA 2020; 5:28656-28662. [PMID: 33195918 PMCID: PMC7658947 DOI: 10.1021/acsomega.0c03764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 05/08/2023]
Abstract
The electronic communication between two ferrocene groups in the electron-deficient expanded aza-BODIPY analogue of zinc manitoba-dipyrromethene (MB-DIPY) was probed by spectroscopic, electrochemical, spectroelectrochemical, and theoretical methods. The excited-state dynamics involved sub-ps formation of the charge-separated state in the organometallic zinc MB-DIPYs, followed by recovery of the ground state via charge recombination in 12 ps. The excited-state behavior was contrasted with that observed in the parent complex that lacked the ferrocene electron donors and has a much longer excited-state lifetime (670 ps for the singlet state). Much longer decay times observed for the parent complex without ferrocene confirm that the main quenching mechanism in the ferrocene-containing 4 is reflective of the ultrafast ferrocene-to-MB-DIPY core charge transfer (CT).
Collapse
Affiliation(s)
- Yuriy
V. Zatsikha
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Liliya I. Shamova
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jacob W. Schaffner
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew T. Healy
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tanner S. Blesener
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Gabriel Cohen
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Brandon Wozniak
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - David A. Blank
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Victor N. Nemykin
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Zhang G, Wang M, Ndung’U C, Bobadova-Parvanova P, Fronczek FR, Smith KM, Vicente MGH. Synthesis and investigation of BODIPYs with restricted meso-8-aryl rotation. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three BODIPYs bearing 1,3,5,7-tetramethyl substituents and a meso-8-aryl group were synthesized and investigated, both experimentally and computationally. The presence of the 1,7-methyl groups and of ortho-substituents on the meso-8-aryl ring prevent free rotation of the meso-8-aryl group, resulting in high fluorescence quantum yields. Substitution at the 2,6-positions of these BODIPYs with chlorine atoms causes pronounced red-shifted absorptions and emissions, and in the case of 2,6-dichloro-1,3,5,7-tetramethyl-8-(2,4,6-triphenylphenyl)-BODIPY 2c increases its fluorescence quantum yields to 0.93 in dichloromethane and 0.98 in toluene. The X-ray structure of 1,3,5,7-tetramethyl-8-(2,4,6-triphenylphenyl)-BODIPY shows increased deviation from planarity and smaller dihedral angle of the meso-8-aryl group compared with the meso-8-phenyl- and meso-8-mesityl-BODIPY analogs. The presence of 2,6-chlorine atoms was found to not significantly affect the rotational barriers of the meso-8-aryl-groups.
Collapse
Affiliation(s)
- Guanyu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maodie Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Caroline Ndung’U
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kevin M. Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Zatsikha YV, Shamova LI, Blesener TS, Kuzmin IA, Germanov YV, Herbert DE, Nemykin VN. Development of a Class of Easily Scalable, Electron-Deficient, Core-Extended Benzo-Fused Azadipyrromethene Derivatives (“MB-DIPY”). J Org Chem 2019; 84:14540-14557. [DOI: 10.1021/acs.joc.9b02074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Liliya I. Shamova
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Tanner S. Blesener
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ilya A. Kuzmin
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yaroslaw V. Germanov
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - David E. Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Victor N. Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|