1
|
Alom SE, Kalita S, Kawa AH, Mandal B, Swaminathan R. Early events during the aggregation of Aβ 16-22-derived switch-peptides tracked using Protein Charge Transfer Spectra. Anal Chim Acta 2024; 1297:342374. [PMID: 38438229 DOI: 10.1016/j.aca.2024.342374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Understanding Aβ aggregation and inhibiting it at early stages is of utmost importance in treating Alzheimer's and other related amyloidogenic diseases. However, majority of the techniques to study Aβ aggregation mainly target the late stages; while those used to monitor early stages are either expensive, use extrinsic dyes, or do not provide information on molecular level interactions. Here, we investigate the early events of Aβ16-22(KLVFFAE) aggregation using Aβ16-22 derived switch-peptides (SwPs) through a novel label-free approach employing Protein Charge Transfer Spectra (ProCharTS). RESULTS When pH is increased from 2 to 7.2, the Aβ-derived switch peptides undergo controlled self-assembly, where the initial random coil peptides convert into β-sheet. We leveraged the intrinsic absorbance/luminescence arising from ProCharTS among growing peptide oligomers to observe the aggregation kinetics in real-time. In comparison to monomer, the lysine and glutamate headgroups in the peptide oligomer are expected to come in proximity enhancing ProCharTS intensity due to photoinduced electron transfer. With a combination of Aβ-derived switch-peptides and ProCharTS, we obtained structural insights on the early stages of Aβ-derived SwP aggregation in four unique peptides. Increase in scatter corrected ProCharTS absorbance (250-500 nm) and luminescence (320-720 nm) along with decreased mean luminescence lifetime (2.3-0.8 ns) characterize the initial stages of aggregation monitored for 1-96 h depending on the peptide. We correlated the results with Circular Dichroism (CD), 8-anilino-1-naphthalenesulfonic acid (ANS) and Thioflavin T (ThT) measurements. SIGNIFICANCE We demonstrate ProCharTS as an intrinsic analytical probe with following advantages over other conventional methods to track aggregation: it is a label-free probe; it's intensity can be measured using a UV-Vis spectrophotometer; it is more sensitive in detecting the early molecular events in aggregation compared to ANS and ThT; and it can provide information on specific contacts made between charged headgroups of Lysine/Glutamate in the oligomer.
Collapse
Affiliation(s)
- Shah Ekramul Alom
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sourav Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Altaf Hussain Kawa
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Morzan UN, Díaz Mirón G, Grisanti L, González Lebrero MC, Kaminski Schierle GS, Hassanali A. Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule? J Phys Chem B 2022; 126:7203-7211. [PMID: 36128666 DOI: 10.1021/acs.jpcb.2c04280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While in the vast majority of cases fluorescence in biological matter has been attributed to aromatic or conjugated groups, peptides associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, or Huntington's, have been recently shown to display an intrinsic visible fluorescence even in the absence of aromatic residues. This has called the attention of researchers from many different fields, trying to understand the origin of this peculiar behavior and, at the same time, motivating the search for novel strategies to control the optical properties of new biophotonic materials. Today, after nearly 15 years of its discovery, there is a growing consensus about the mechanism underlying this phenomenon, namely, that electronic interactions between non-optically active molecules can result in supramolecular assemblies that are fluorescent. Despite this progress, many aspects of this phenomenon remain uncharted territory. In this Perspective, we lay down the state-of-the-art in the field highlighting the open questions from both experimental and theoretical fronts in this fascinating emerging area of non-aromatic fluorescence.
Collapse
Affiliation(s)
- Uriel N Morzan
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Gonzalo Díaz Mirón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Luca Grisanti
- Division of Theoretical Physics, Ruđer Bos̆cković Institute, Bijenic̆ka cesta 54, 10000 Zagreb, Croatia
| | - Mariano C González Lebrero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ali Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
3
|
Grelich-Mucha M, Lipok M, Różycka M, Samoć M, Olesiak-Bańska J. One- and Two-Photon Excited Autofluorescence of Lysozyme Amyloids. J Phys Chem Lett 2022; 13:4673-4681. [PMID: 35605187 PMCID: PMC9169060 DOI: 10.1021/acs.jpclett.2c00570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 05/03/2023]
Abstract
Autofluorescence properties of amyloid fibrils are of much interest but, to date, the attention has been given mostly to one-photon excited fluorescence (1PEF), while the two-photon excited fluorescence (2PEF) properties of amyloids are much less explored. We investigate 1PEF and 2PEF of hen egg-white lysozyme (HEWL) in the form of monomers and fibrils. HEWL monomers feature some autofluorescence, which is enhanced in the case of fibrils. Moreover, by varying NaCl content, we introduce changes to fibrils morphology and show how the increase of the salt concentration is linked with an increase of 1PEF and 2PEF intensities. Interestingly, we observe 2PEF emission red-shifted in comparison to 1PEF. We confirm the presence of different relaxation pathways upon one- or two-photon excitation by different lifetimes of the fluorescence decays. Finally, we correlate the changes in optical properties of HEWL fibrils and monomers with salt-mediated changes in their morphology and the secondary structure.
Collapse
Affiliation(s)
- Manuela Grelich-Mucha
- Advanced
Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Maciej Lipok
- Advanced
Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Mirosława Różycka
- Department
of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Marek Samoć
- Advanced
Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Advanced
Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
4
|
Abstract
Intrinsic fluorescence of nonaromatic amino acids is a puzzling phenomenon with an enormous potential in biophotonic applications. The physical origins of this effect, however, remain elusive. Herein, we demonstrate how specific hydrogen bond networks can modulate fluorescence. We highlight the key role played by short hydrogen bonds, present in the protein structure, on the ensuing fluorescence. We provide detailed experimental and molecular evidence to explain these unusual nonaromatic optical properties. Our findings should benefit the design of novel optically active biomaterials for applications in biosensing and imaging. Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.
Collapse
|
5
|
Grelich-Mucha M, Garcia AM, Torbeev V, Ożga K, Berlicki Ł, Olesiak-Bańska J. Autofluorescence of Amyloids Determined by Enantiomeric Composition of Peptides. J Phys Chem B 2021; 125:5502-5510. [PMID: 34008978 PMCID: PMC8182742 DOI: 10.1021/acs.jpcb.1c00808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Amyloid fibrils are
peptide or protein aggregates possessing a
cross-β-sheet structure. They possess intrinsic fluorescence
property, which is still not fully understood. Herein, we compare
structural and optical properties of fibrils formed from L- and D-enantiomers
of the (105–115) fragment of transthyretin (TTR) and from their
racemic mixture. Our results show that autofluorescence of fibrils
obtained from enantiomers differs from that of fibrils from the racemic
mixture. In order to elucidate the origin of observed differences,
we analyzed the structure and morphology of fibrils and showed how
variations in β-sheet organization influence optical properties
of fibrils. We clarified the contribution of aromatic rings and the
amyloid backbone to the final blue-green emission of fibrils. This
work demonstrates how enantiomeric composition of amino acids allows
us to modulate the self-assembly and final morphology of well-defined
fibrillar bionanostructures with optical properties controlled by
supramolecular organization.
Collapse
Affiliation(s)
- Manuela Grelich-Mucha
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ana M Garcia
- Institute de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS (UMR 7006) Strasbourg 67000, France
| | - Vladimir Torbeev
- Institute de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS (UMR 7006) Strasbourg 67000, France
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Olesiak-Bańska
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Wang Y, Zhao Z, Yuan WZ. Intrinsic Luminescence from Nonaromatic Biomolecules. Chempluschem 2020; 85:1065-1080. [DOI: 10.1002/cplu.202000021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yunzhong Wang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Lab of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research CenterShanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 P. R. China
| | - Zihao Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Lab of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research CenterShanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 P. R. China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Lab of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research CenterShanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 P. R. China
| |
Collapse
|
7
|
Villa AM, Doglia SM, De Gioia L, Bertini L, Natalello A. Anomalous Intrinsic Fluorescence of HCl and NaOH Aqueous Solutions. J Phys Chem Lett 2019; 10:7230-7236. [PMID: 31689111 DOI: 10.1021/acs.jpclett.9b02163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The unique properties of liquid water mainly arise from its hydrogen bond network. The geometry and dynamics of this network play a key role in shaping the characteristics of soft matter, from simple solutions to biosystems. Here we report an anomalous intrinsic fluorescence of HCl and NaOH aqueous solutions at room temperature that shows important differences in the excitation and emission bands between the two solutes. From ab initio time-dependent density functional theory modeling we propose that fluorescence emission could originate from hydrated ion species contained in transient cavities of the bulk solvent. These cavities, which are characterized by a stiff surface, could provide an environment that, upon trapping the excited state, suppresses the fast nonradiative decay and allows the slower radiative channel to become a possible decay pathway.
Collapse
Affiliation(s)
- Anna Maria Villa
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| |
Collapse
|
8
|
Jong KH, Azar YT, Grisanti L, Stephens AD, Jones STE, Credgington D, Kaminski Schierle GS, Hassanali A. Low energy optical excitations as an indicator of structural changes initiated at the termini of amyloid proteins. Phys Chem Chem Phys 2019; 21:23931-23942. [PMID: 31661536 DOI: 10.1039/c9cp04648h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a growing body of experimental work showing that protein aggregates associated with amyloid fibrils feature intrinsic fluorescence. In order to understand the microscopic origin of this behavior observed in non-aromatic aggregates of peptides and proteins, we conducted a combined experimental and computational study on the optical properties of amyloid-derived oligopeptides in the near-UV region. We have focused on a few model systems having charged termini (zwitterionic) or acetylated termini. For the zwitterionic system, we were able to simulate the longer tail absorption in the near UV (250-350 nm), supporting the experimental results in terms of excitation spectra. We analyzed the optical excitations responsible for the low-energy absorption and found a large role played by charge-transfer states around the termini. These charge-transfer excitations are very sensitive to the conformation of the peptide and in realistic fibrils may involve inter and intra chain charge reorganization.
Collapse
Affiliation(s)
- Kwang Hyok Jong
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Thongyod W, Buranachai C, Pengpan T, Punwong C. Fluorescence quenching by photoinduced electron transfer between 7-methoxycoumarin and guanine base facilitated by hydrogen bonds: an in silico study. Phys Chem Chem Phys 2019; 21:16258-16269. [PMID: 31304496 DOI: 10.1039/c9cp02037c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the effects of hydrogen bond (H-bond) formation on fluorescence quenching of 7-methoxycoumarin (7MC) via photo-induced electron transfer from a guanine base (Gua) are investigated using a combined quantum mechanics/molecular mechanics simulation. The electronic structure is calculated by the floating occupation molecular orbital complete active space configuration interaction modification on a semiempirical method. Then the full multiple spawning method is employed for the dynamics simulations on multiple electronic states. The methods employed here are validated by simulating direct dynamics of 7MC (without Gua) and compared with available experimental results. Our computational results are in good agreement with the previously reported experimental results in terms of spectroscopic properties of 7MC. In the case of a H-bonded 7MC-Gua complex, the results from constrained dynamics simulations and single-point calculations suggest that the electron transfer occurs on the second excited state and it depends not only on the H-bond length but also on the intermolecular planarity between 7MC and Gua. Moreover, a proton coupled electron transfer can occur at ≈1 Å of H-bond length, where a proton from Gua is also transferred together with the electron to 7MC. The obtained simulations are expected to be greatly beneficial for designing effective fluorescently labeled nucleotide probes as well as providing information for precise fluorescence signal interpretation.
Collapse
Affiliation(s)
- Wutthinan Thongyod
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand. and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90112, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand. and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90112, Thailand
| | - Teparksorn Pengpan
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Chutintorn Punwong
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| |
Collapse
|