1
|
Debnath A, Rajakumar B. Exploring the Intricate Mechanism and Kinetics of the Reaction between C2-Criegee Intermediates (CH 3CHOO) and Acetaldehyde: A Study Using Cavity Ring-Down Spectroscopy and Computational Methods. J Phys Chem A 2025. [PMID: 40114427 DOI: 10.1021/acs.jpca.5c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Temperature-dependent kinetics for the reaction of C2-Criegee intermediates (CH3CHOO) with acetaldehyde (CH3CHO) was studied at 268-313 K and 50 Torr using cavity ring-down spectroscopy with single-wavelength (360 nm) probing. The measured rate coefficients are expected to have contributions from both the anti- and syn-conformers of CH3CHOO. Negative T dependence was observed for the title reaction, and the corresponding Arrhenius equation is k3(T = 268 - 313 K) = (1.34 ± 0.07) × 10-13 × exp{(1.71 ± 0.03) kcal mol-1/RT}. The room temperature rate coefficients measured at 50 and 100 Torr are (2.43 ± 0.17) × 10-12 and (2.56 ± 0.20) × 10-12 cm3 molecule-1 s-1, respectively. Theoretical calculations were performed at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311G(d,p) level of theory to obtain the high-pressure limit rate coefficients for the reaction of anti- and syn-CH3CHOO with CH3CHO. The high-pressure limit rate coefficient for syn-CH3CHOO is approximately 3 orders of magnitude smaller than that of the anti-conformer, the latter being closely aligned with the experimental value. The rate coefficients for anti-CH3CHOO + CH3CHO at 50 Torr using the master equation solver (MESMER) are in agreement with the experimental values in the studied temperature range. MESMER also predicted CH3COOH to be the major product for both anti- and syn-CH3CHOO reactions by comparing the rate coefficients for the product formation pathways. A dramatic dependence of the pressure on stabilization of the SOZs was also observed for both conformers at different pressures.
Collapse
Affiliation(s)
- Amit Debnath
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Sun C, Xu B, Zeng Y. Pressure and temperature dependent kinetics and the reaction mechanism of Criegee intermediates with vinyl alcohol: a theoretical study. Phys Chem Chem Phys 2024; 26:9524-9533. [PMID: 38451236 DOI: 10.1039/d3cp06115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Criegee intermediates (CIs), the key intermediates in the ozonolysis of olefins in atmosphere, have received much attention due to their high activity. The reaction mechanism of the most simple Criegee intermediate CH2OO with vinyl alcohol (VA) was investigated by using the HL//M06-2X/def2TZVP method. The temperature and pressure dependent rate constant and product branching ratio were calculated using the master equation method. For CH2OO + syn-VA, 1,4-insertion is the main reaction channel while for the CH2OO + anti-VA, cycloaddition and 1,2-insertion into the O-H bond are more favorable than the 1,4-insertion reaction. The 1,4-insertion or cycloaddition intermediates are stabilized collisionally at 300 K and 760 torr, and the dissociation products involving OH are formed at higher temperature and lower pressure. The rate constants of the CH2OO reaction with syn-VA and anti-VA both show negative temperature effects, and they are 2.95 × 10-11 and 2.07 × 10-13 cm3 molecule-1 s-1 at 300 K, respectively, and the former is agreement with the prediction in the literature.
Collapse
Affiliation(s)
- Cuihong Sun
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, Technology Innovation Center of HeBei for Heterocyclic Compound, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, P. R. China
| | - Baoen Xu
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, Technology Innovation Center of HeBei for Heterocyclic Compound, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, P. R. China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, P.R. China.
| |
Collapse
|
3
|
Cornwell Z, Enders JJ, Harrison AW, Murray C. Temperature-Dependent Kinetics of the Reactions of the Criegee Intermediate CH 2OO with Hydroxyketones. J Phys Chem A 2024; 128:1880-1891. [PMID: 38428028 PMCID: PMC10945482 DOI: 10.1021/acs.jpca.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Though there is a growing body of literature on the kinetics of CIs with simple carbonyls, CI reactions with functionalized carbonyls such as hydroxyketones remain unexplored. In this work, the temperature-dependent kinetics of the reactions of CH2OO with two hydroxyketones, hydroxyacetone (AcOH) and 4-hydroxy-2-butanone (4H2B), have been studied using a laser flash photolysis transient absorption spectroscopy technique and complementary quantum chemistry calculations. Bimolecular rate constants were determined from CH2OO loss rates observed under pseudo-first-order conditions across the temperature range 275-335 K. Arrhenius plots were linear and yielded T-dependent bimolecular rate constants: kAcOH(T) = (4.3 ± 1.7) × 10-15 exp[(1630 ± 120)/T] and k4H2B(T) = (3.5 ± 2.6) × 10-15 exp[(1700 ± 200)/T]. Both reactions show negative temperature dependences and overall very similar rate constants. Stationary points on the reaction energy surfaces were characterized using the composite CBS-QB3 method. Transition states were identified for both 1,3-dipolar cycloaddition reactions across the carbonyl and 1,2-insertion/addition at the hydroxyl group. The free-energy barriers for the latter reaction pathways are higher by ∼4-5 kcal mol-1, and their contributions are presumed to be negligible for both AcOH and 4H2B. The cycloaddition reactions are highly exothermic and form cyclic secondary ozonides that are the typical primary products of Criegee intermediate reactions with carbonyl compounds. The reactivity of the hydroxyketones toward CH2OO appears to be similar to that of acetaldehyde, which can be rationalized by consideration of the energies of the frontier molecular orbitals involved in the cycloaddition. The CH2OO + hydroxyketone reactions are likely too slow to be of significance in the atmosphere, except at very low temperatures.
Collapse
Affiliation(s)
- Zachary
A. Cornwell
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Jonas J. Enders
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Aaron W. Harrison
- Department
of Chemistry, Austin College, Sherman, Texas 75090, United States
| | - Craig Murray
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Zhang YQ, Francisco JS, Long B. Rapid Atmospheric Reactions between Criegee Intermediates and Hypochlorous Acid. J Phys Chem A 2024; 128:909-917. [PMID: 38271208 DOI: 10.1021/acs.jpca.3c06144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hypochlorous acid (HOCl) is a paramount compound in the atmosphere due to its significant contribution to both tropospheric oxidation capacity and ozone depletion. The main removal routes for HOCl are photolysis and the reaction with OH during the daytime, while these processes are unimportant during the nighttime. Here, we report the rapid reactions of Criegee intermediates (CH2OO and anti/syn-CH3CHOO) with HOCl by using high-level quantum chemical methods as the benchmark; their accuracy is close to coupled cluster theory with single, double, and triple excitations and quasiperturbative connected quadruple excitations with a complete basis limit by extrapolation [CCSDT(Q)/CBS]. Their rate constants have been calculated by using a dual-level strategy; this combines conventional transition state theory calculated at the benchmark level with variational transition state theory with small-curvature tunneling by a validated density functional method. We find that the introduction of the methyl group into Criegee intermediates not only affects their reactivities but also exerts a remarkable influence on anharmonicity. The calculated results uncover that anharmonicity increases the rate constants of CH2OO + HOCl by a factor of 18-5, while it is of minor importance in the anti/syn-CH3CHOO + HOCl reaction at 190-350 K. The present findings reveal that the loose transition state for anti-CH3CHOO and HOCl is a rate-determining step at 190-350 K. We also find that the reaction of Criegee intermediates with HOCl contributes significantly to the sink of HOCl during the nighttime in the atmosphere.
Collapse
Affiliation(s)
- Yu-Qiong Zhang
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bo Long
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
5
|
Wu YJ, Takahashi K, Lin JJM. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect. J Phys Chem A 2023; 127:8059-8072. [PMID: 37734061 DOI: 10.1021/acs.jpca.3c03418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The kinetics of the simplest Criegee intermediate (CH2OO) reaction with water vapor was revisited. By improving the signal-to-noise ratio and the precision of water concentration, we found that the kinetics of CH2OO involves not only two water molecules but also one and three water molecules. Our experimental results suggest that the decay of CH2OO can be described as d[CH2OO]/dt = -kobs[CH2OO]; kobs = k0 + k1[water] + k2[water]2 + k3[water]3; k1 = (4.22 ± 0.48) × 10-16 cm3 s-1, k2 = (10.66 ± 0.83) × 10-33 cm6 s-1, k3 = (1.48 ± 0.17) × 10-50 cm9 s-1 at 298 K and 300 Torr with the respective Arrhenius activation energies of Ea1 = 1.8 ± 1.1 kcal mol-1, Ea2 = -11.1 ± 2.1 kcal mol-1, Ea3 = -17.4 ± 3.9 kcal mol-1. The contribution of the k3[water]3 term becomes less significant at higher temperatures around 345 K, but it is not ignorable at 298 K and lower temperatures. By quantifying the concentrations of H2O and D2O with a Coriolis-type direct mass flow sensor, the kinetic isotope effect (KIE) was investigated at 298 K and 300 Torr and KIE(k1) = k1(H2O)/k1(D2O) = 1.30 ± 0.32; similarly, KIE(k2) = 2.25 ± 0.44 and KIE(k3) = 0.99 ± 0.13. These mild KIE values are consistent with theoretical calculations based on the variational transition state theory, confirming that the title reaction has a broad and low barrier, and the reaction coordinate involves not only the motion of a hydrogen atom but also that of an oxygen atom. Comparing the results recorded under 300 Torr (N2 buffer gas) with those under 600 Torr, a weak pressure effect of k3 was found. From quantum chemistry calculations, we found that the CH2OO + 3H2O reaction is dominated by the reaction pathways involving a ring structure consisting of two water molecules, which facilitate the hydrogen atom transfer, while the third water molecule is hydrogen-bonded outside the ring. Furthermore, analysis based on dipole capture rates showed that the CH2OO(H2O) + (H2O)2 and CH2OO(H2O)2 + H2O pathways will dominate in the three water reaction.
Collapse
Affiliation(s)
- Yen-Ju Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106923, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106923, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106923, Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106923, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106923, Taiwan
| |
Collapse
|
6
|
Sun Y, Long B, Truhlar DG. Unimolecular Reactions of E-Glycolaldehyde Oxide and Its Reactions with One and Two Water Molecules. RESEARCH (WASHINGTON, D.C.) 2023; 6:0143. [PMID: 37435010 PMCID: PMC10332847 DOI: 10.34133/research.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023]
Abstract
The kinetics of Criegee intermediates are important for atmospheric modeling. However, the quantitative kinetics of Criegee intermediates are still very limited, especially for those with hydroxy groups. Here, we calculate rate constants for the unimolecular reaction of E-glycolaldehyde oxide [E-hydroxyethanal oxide, E-(CH2OH)CHOO], for its reactions with H2O and (H2O)2, and for the reaction of the E-(CH2OH)CHOO…H2O complex with H2O. For the highest level of electronic structure, we use W3X-L//CCSD(T)-F12a/cc-pVDZ-F12 for the unimolecular reaction and the reaction with water and W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ for the reaction with 2 water molecules. For the dynamics, we use a dual-level strategy that combines conventional transition state theory with the highest level of electronic structure and multistructural canonical variational transition state theory with small-curvature tunneling with a validated density functional for the electronic structure. This dynamical treatment includes high-frequency anharmonicity, torsional anharmonicity, recrossing effects, and tunneling. We find that the unimolecular reaction of E-(CH2OH)CHOO depends on both temperature and pressure. The calculated results show that E-(CH2OH)CHOO…H2O + H2O is the dominant entrance channel, while previous investigations only considered Criegee intermediates + (H2O)2. In addition, we find that the atmospheric lifetime of E-(CH2OH)CHOO with respect to 2 water molecules is particularly short with a value of 1.71 × 10-6 s at 0 km, which is about 2 orders of magnitude shorter than those usually assumed for Criegee intermediate reactions with water dimer. We also find that the OH group in E-(CH2OH)CHOO enhances its reactivity.
Collapse
Affiliation(s)
- Yan Sun
- Department of Physics, Guizhou University, Guiyang 550025, China
| | - Bo Long
- Department of Physics, Guizhou University, Guiyang 550025, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
7
|
Begley JM, Aroeira GJR, Turney JM, Douberly GE, Schaefer HF. Enthalpies of formation for Criegee intermediates: A correlation energy convergence study. J Chem Phys 2023; 158:034302. [PMID: 36681629 DOI: 10.1063/5.0127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Criegee intermediates, formed from the ozonolysis of alkenes, are known to have a role in atmospheric chemistry, including the modulation of the oxidizing capacity of the troposphere. Although studies have been conducted since their discovery, the synthesis of these species in the laboratory has ushered in a new wave of investigations of these structures, both theoretically and experimentally. In some of these theoretical studies, high-order corrections for correlation energy are included to account for the mid multi-reference character found in these systems. Many of these studies include a focus on kinetics; therefore, the calculated energies should be accurate (<1 kcal/mol in error). In this research, we compute the enthalpies of formation for a small set of Criegee intermediates, including higher-order coupled cluster corrections for correlation energy up to coupled cluster with perturbative quintuple excitations. The enthalpies of formation for formaldehyde oxide, anti-acetaldehyde oxide, syn-acetaldehyde oxide, and acetone oxide are presented at 0 K as 26.5, 15.6, 12.2, and 0.1 kcal mol-1, respectively. Additionally, we do not recommend the coupled cluster with perturbative quadruple excitations [CCSDT(Q)] energy correction, as it is approximately twice as large as that of the coupled cluster with full quadruple excitations (CCSDTQ). Half of the CCSDT(Q) energy correction may be included as a reliable, cost-effective estimation of CCSDTQ energies for Criegee intermediates.
Collapse
Affiliation(s)
- James M Begley
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gustavo J R Aroeira
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Justin M Turney
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gary E Douberly
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F Schaefer
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
8
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
9
|
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023; 99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
Abstract
Interest in Criegee intermediates (CIs), often termed carbonyl oxides, and their role in tropospheric chemistry has grown massively since the demonstration of laboratory-based routes to their formation and characterization in the gas phase. This article reviews current knowledge regarding the electronic spectroscopy of atmospherically relevant CIs like CH2 OO, CH3 CHOO, (CH3 )2 COO and larger CIs like methyl vinyl ketone oxide and methacrolein oxide that are formed in the ozonolysis of isoprene, and of selected conjugated carbene-derived CIs of interest in the synthetic chemistry community. Of the aforementioned atmospherically relevant CIs, all except CH2 OO and (CH3 )2 COO exist in different conformers which, under tropospheric conditions, can display strikingly different thermal loss rates via unimolecular and bimolecular processes. Calculated photolysis rates based on their absorption properties suggest that solar photolysis will rarely be a significant contributor to the total loss rate for any CI under tropospheric conditions. Nonetheless, there is ever-growing interest in the absorption cross sections and primary photochemistry of CIs following excitation to the strongly absorbing 1 ππ* state, and how this varies with CI, with conformer and with excitation wavelength. The later part of this review surveys the photochemical data reported to date, including a range of studies that demonstrate prompt photo-induced fission of the terminal O-O bond, and speculates about possible alternate decay processes that could occur following non-adiabatic coupling to, and dissociation from, highly internally excited levels of the electronic ground state of a CI.
Collapse
Affiliation(s)
| | | | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
10
|
Cornwell ZA, Enders JJ, Harrison AW, Murray C. Temperature‐dependent kinetics of the reactions of CH
2
OO with acetone, biacetyl, and acetylacetone. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jonas J. Enders
- Department of Chemistry University of California Irvine California USA
| | | | - Craig Murray
- Department of Chemistry University of California Irvine California USA
| |
Collapse
|
11
|
Yang JN, Takahashi K, Lin JJM. Reaction Kinetics of Criegee Intermediates with Nitric Acid. J Phys Chem A 2022; 126:6160-6170. [PMID: 36044562 DOI: 10.1021/acs.jpca.2c04596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigated the reaction kinetics of HNO3 with four Criegee intermediates (CIs): CH2OO, (CH3)2COO, methyl vinyl ketone oxide (MVKO), and methacrolein oxide (MACRO). Our results show that these reactions are extremely fast with rate coefficients of (1.51 ± 0.45) × 10-10, (3.54 ± 1.06) × 10-10, (3.93 ± 1.18) × 10-10, and (3.0 ± 1.0) × 10-10 cm3 s-1 for reactions of HNO3 with CH2OO, (CH3)2COO, syn-MVKO, and anti-MACRO, respectively. This is consistent with previous results for the reactions between CIs and carboxylic acids, but the rate coefficient of CH2OO + HNO3 in the literature [Foreman Angew. Chem. 2016, 128, 10575] was found to be overestimated by a factor of 3.6. In addition, we did not observe any significant pressure dependence in the HNO3 reactions with CH2OO and (CH3)2COO under 100-400 Torr. Our results indicate that in a dry area with severe NOx pollution, the reactions of CIs with HNO3 and their products may be worthy of attention, but these reactions may be insignificant under high-humidity conditions. However, CI reactions with HNO3 may not play an important role in the atmospheric removal processes of HNO3 because of the low concentrations of CIs.
Collapse
Affiliation(s)
- Jie-Ning Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Endo Y, Sakamoto Y, Kajii Y, Enami S. Decomposition of multifunctionalized α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases. Phys Chem Chem Phys 2022; 24:11562-11572. [PMID: 35506905 DOI: 10.1039/d2cp00915c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of volatile organic compounds in the atmosphere produces organic hydroperoxides (ROOHs) that typically possess not only -OOH but also other functionalities such as -OH and -C(O). Because of their high hydrophilicity and low volatility, such multifunctionalized ROOHs are expected to be taken up in atmospheric condensed phases such as aerosols and fog/cloud droplets. However, the characteristics of ROOHs that control their fates and lifetimes in liquid phases are poorly understood. Here, we report a study of the liquid-phase decomposition kinetics of multifunctionalized α-alkoxyalkyl-hydroperoxides (α-AHs) that possessed an ether, a carbonyl, a hydroperoxide, and two hydroxy groups. These ROOHs were synthesized by ozonolysis of α-terpineol in water in the presence of 1,3-propanediol, 1,4-butanediol, or 1,5-pentanediol. Their decomposition products were detected as chloride anion adducts by electrospray mass spectrometry as a function of reaction time. Experiments using H218O and D2O revealed that hemiacetal species were α-AH decomposition products that further transformed into other products. The result that the rate coefficients (k) of the decomposition of C15 α-AHs increased exponentially from pH 5.0 to 3.9 was consistent with an H+-catalyzed decomposition mechanism. The temperature dependence of k and an Arrhenius plot yielded activation energies (Ea) of 15.7 ± 0.8, 15.0 ± 2.4, and 15.9 ± 0.3 kcal mol-1 for the decomposition of α-AHs derived from the reaction of α-terpineol CIs with 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol, respectively. The determined Ea values were compared with those of related ROOHs. We found that alkyl chain length is not a critical factor for the decomposition mechanism, whereas the presence of additional -OH groups would modulate the reaction barriers to decomposition via the formation of hydrogen-bonding with surrounding water molecules. The derived Ea values for the decomposition of the multifunctionalized, terpenoid-derived α-AHs will facilitate atmospheric modeling by serving as representative values for ROOHs in atmospheric condensed phases.
Collapse
Affiliation(s)
- Yasuyuki Endo
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Yoshizumi Kajii
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| |
Collapse
|
13
|
Vansco MF, Zou M, Antonov IO, Ramasesha K, Rotavera B, Osborn DL, Georgievskii Y, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI, Caravan RL. Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine Via a 1,2-Insertion Mechanism. J Phys Chem A 2021; 126:710-719. [PMID: 34939803 DOI: 10.1021/acs.jpca.1c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron-multiplexed photoionization mass spectrometry experiments (298 K and 4 Torr) and high-level theory [CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction], we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethylamine (DMA). The experimental data support the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-vacuum ultraviolet photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. The rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ∼34,000, which is attributed to submerged barrier (syn) versus barrierless (anti) mechanisms for energetically downhill reactions.
Collapse
Affiliation(s)
- Michael F Vansco
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Meijun Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan O Antonov
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112, United States.,Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Brandon Rotavera
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States.,School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - David L Osborn
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States.,Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Carl J Percival
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Craig A Taatjes
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rebecca L Caravan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
14
|
Cornwell ZA, Harrison AW, Murray C. Kinetics of the Reactions of CH 2OO with Acetone, α-Diketones, and β-Diketones. J Phys Chem A 2021; 125:8557-8571. [PMID: 34554761 DOI: 10.1021/acs.jpca.1c05280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rate constants for the reactions between the simplest Criegee intermediate, CH2OO, with acetone, the α-diketones biacetyl and acetylpropionyl, and the β-diketones acetylacetone and 3,3-dimethyl-2,4-pentanedione have been measured at 295 K. CH2OO was produced photochemically in a flow reactor by 355 nm laser flash photolysis of diiodomethane in the presence of excess oxygen. Time-dependent concentrations were measured using broadband transient absorption spectroscopy, and the reaction kinetics was characterized under pseudo-first-order conditions. The bimolecular rate constant for the CH2OO + acetone reaction is measured to be (4.1 ± 0.4) × 10-13 cm3 s-1, consistent with previous measurements. The reactions of CH2OO with the β-diketones acetylacetone and 3,3-dimethyl-2,5-pentanedione are found to have broadly similar rate constants of (6.6 ± 0.7) × 10-13 and (3.5 ± 0.8) × 10-13 cm3 s-1, respectively; these values may be cautiously considered as upper limits. In contrast, α-diketones react significantly faster, with rate constants of (1.45 ± 0.18) × 10-11 and (1.29 ± 0.15) × 10-11 cm3 s-1 measured for biacetyl and acetylpropionyl. The potential energy surfaces for these 1,3-dipolar cycloaddition reactions are characterized at the M06-2X/aug-cc-pVTZ and CBS-QB3 levels of theory and provide additional support to the observed experimental trends. The reactivity of carbonyl compounds with CH2OO is also interpreted by application of frontier molecular orbital theory and predicted using Hammett substituent constants. Finally, the results are compared with other kinetic studies of Criegee intermediate reactions with carbonyl compounds and discussed within the context of their atmospheric relevance.
Collapse
Affiliation(s)
- Zachary A Cornwell
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron W Harrison
- Department of Chemistry, Austin College, Sherman, Texas 75090, United States
| | - Craig Murray
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
15
|
Ji YT, Lee YP. Dynamics of Reaction CH 3CHI + O 2 Investigated via Infrared Emission of Products CO, CO 2, and OH. J Phys Chem A 2021; 125:8373-8385. [PMID: 34524829 DOI: 10.1021/acs.jpca.1c05610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction CH3CHI + O2 has been commonly employed in laboratories to produce a methyl-substituted Criegee intermediate CH3CHOO, but the detailed dynamics of this reaction remain unexplored. We carried out this reaction by irradiating a flowing mixture of CH3CHI2 (∼70 mTorr) and O2 (∼4 and 8 Torr) at 308 or 248 nm and observed infrared emission of the products with a step-scan Fourier-transform spectrometer. Upon irradiation at 248 nm with O2 ∼4 Torr, a Boltzmann distribution of CO (v ≤ 4, J ≤ 25) with average vibrational energy (12 ± 2) kJ mol-1 and of OH (v = 1, J ≤ 5.5) were observed and assigned to be produced from the decomposition of CH3C(O)OH* to form CO + CH3OH and OH + CH3CO, respectively. The observed broadband emission of CO2 was simulated with two vibrational distributions of average energies (42 ± 3) and (114 ± 6) kJ mol-1 and assigned to be produced from the decomposition of CH3C(O)OH* and (methyl dioxirane)*, respectively. The results upon irradiation of the sample at 308 nm are similar, likely indicating a small fraction of energy partition into these products and rapid thermalization of CH3CHI*. Compared with reaction CH2I + O2, the title reaction yielded products with much less internal excitation, consistent with the expectation that these observed products receive much less fraction of available energy upon fragmentation when an additional methyl moiety was present in the parent. The large-v component of CO observed in experiments of CH2I + O2 at 248 nm, produced from secondary reaction HCO + O2, was absent in this work because the corresponding secondary reaction CH3CO + O2 in decomposition of CH3CHOO* produces α-lactone + OH or H2CO + CO + OH.
Collapse
Affiliation(s)
- Ya-Tsang Ji
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
16
|
Takahashi K. Theoretical analysis on reactions between
syn‐
methyl Criegee intermediate and amino alcohols. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaito Takahashi
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| |
Collapse
|
17
|
Kuo MT, Yang JN, Lin JJM, Takahashi K. Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol. J Phys Chem A 2021; 125:6580-6590. [PMID: 34314585 DOI: 10.1021/acs.jpca.1c03737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Via intramolecular H atom transfer, 3-aminopropanol is more reactive toward Criegee intermediates, in comparison with amines or alcohols. Here we accessed the substituent effect of Criegee intermediates in their reactions with 3-aminopropanol. Through real-time monitoring the concentrations of two Criegee intermediates with their strong UV absorption at 340 nm, the experimental rate coefficients at 298 K (100-300 Torr) were determined to be (1.52 ± 0.08) × 10-11 and (1.44 ± 0.22) × 10-13 cm3 s-1 for the reactions of 3-aminopropanol with (CH3)2COO (acetone oxide) and CH2CHC(CH3)OO (methyl vinyl ketone oxide), respectively. Compared to our previous experimental value for the reaction with syn-CH3CHOO, (1.24 ± 0.13) × 10-11 cm3 s-1, we can see that the methyl substitution at the anti position has little effect on the reactivity while the vinyl substitution causes a drastic decrease in the reactivity. Our theoretical calculations based on CCSD(T)-F12 energies reproduce this 2-order-of-magnitude decrease in the rate coefficient caused by the vinyl substitution. Using the activation strain model, we found that the interaction of Criegee intermediates with 3-aminopropanol is weaker for the case of vinyl substitution. This effect can be further rationalized by the delocalization of the lowest unoccupied molecular orbital for the vinyl-substituted Criegee intermediates. These results would help us better estimate the impact of similar reactions like the reactions of Criegee intermediates with water vapor, some of which could be difficult to measure experimentally but can be important in the atmosphere. We also found that the B2PLYP-D3BJ/aug-cc-pVTZ calculation can reproduce the CCSD(T)-F12 reaction barrier energies within ca. 1 kcal mol-1, indicating that the use of the B2PLYP-D3BJ method is promising for future predictions of the reactions of larger Criegee intermediates.
Collapse
Affiliation(s)
- Mei-Tsan Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jie-Ning Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Abstract
The fates of organic hydroperoxides (ROOHs) in atmospheric condensed phases are key to understanding the oxidative and toxicological potentials of particulate matter. Recently, mass spectrometric detection of ROOHs as chloride anion adducts has revealed that liquid-phase α-hydroxyalkyl hydroperoxides, derived from hydration of carbonyl oxides (Criegee intermediates), decompose to geminal diols and H2O2 over a time frame that is sensitively dependent on the water content, pH, and temperature of the reaction solution. Based on these findings, it has been proposed that H+-catalyzed conversion of ROOHs to ROHs + H2O2 is a key process for the decomposition of ROOHs that bypasses radical formation. In this perspective, we discuss our current understanding of the aqueous-phase decomposition of atmospherically relevant ROOHs, including ROOHs derived from reaction between Criegee intermediates and alcohols or carboxylic acids, and of highly oxygenated molecules (HOMs). Implications and future challenges are also discussed.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
19
|
Vansco MF, Zuraski K, Winiberg FAF, Au K, Trongsiriwat N, Walsh PJ, Osborn DL, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI, Caravan RL. Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Molecules 2021; 26:3058. [PMID: 34065491 PMCID: PMC8161369 DOI: 10.3390/molecules26103058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Methacrolein oxide (MACR-oxide) is a four-carbon, resonance-stabilized Criegee intermediate produced from isoprene ozonolysis, yet its reactivity is not well understood. This study identifies the functionalized hydroperoxide species, 1-hydroperoxy-2-methylallyl formate (HPMAF), generated from the reaction of MACR-oxide with formic acid using multiplexed photoionization mass spectrometry (MPIMS, 298 K = 25 °C, 10 torr = 13.3 hPa). Electronic structure calculations indicate the reaction proceeds via an energetically favorable 1,4-addition mechanism. The formation of HPMAF is observed by the rapid appearance of a fragment ion at m/z 99, consistent with the proposed mechanism and characteristic loss of HO2 upon photoionization of functional hydroperoxides. The identification of HPMAF is confirmed by comparison of the appearance energy of the fragment ion with theoretical predictions of its photoionization threshold. The results are compared to analogous studies on the reaction of formic acid with methyl vinyl ketone oxide (MVK-oxide), the other four-carbon Criegee intermediate in isoprene ozonolysis.
Collapse
Affiliation(s)
- Michael F. Vansco
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA; (M.F.V.); (N.T.); (P.J.W.)
- Argonne National Laboratory, Chemical Sciences and Engineering Division, Lemont, IL 60439, USA;
| | - Kristen Zuraski
- NASA Postdoctoral Program Fellow, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA;
| | - Frank A. F. Winiberg
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; (F.A.F.W.); (C.J.P.)
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kendrew Au
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA 94551, USA; (K.A.); (D.L.O.)
| | - Nisalak Trongsiriwat
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA; (M.F.V.); (N.T.); (P.J.W.)
| | - Patrick J. Walsh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA; (M.F.V.); (N.T.); (P.J.W.)
| | - David L. Osborn
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA 94551, USA; (K.A.); (D.L.O.)
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| | - Carl J. Percival
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; (F.A.F.W.); (C.J.P.)
| | - Stephen J. Klippenstein
- Argonne National Laboratory, Chemical Sciences and Engineering Division, Lemont, IL 60439, USA;
| | - Craig A. Taatjes
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA 94551, USA; (K.A.); (D.L.O.)
| | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA; (M.F.V.); (N.T.); (P.J.W.)
| | - Rebecca L. Caravan
- Argonne National Laboratory, Chemical Sciences and Engineering Division, Lemont, IL 60439, USA;
- NASA Postdoctoral Program Fellow, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA;
| |
Collapse
|
20
|
Hu M, Qiu J, Tonokura K, Enami S. Aqueous-phase fates of α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with alcohols. Phys Chem Chem Phys 2021; 23:4605-4614. [PMID: 33620039 DOI: 10.1039/d0cp06308h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the atmosphere, carbonyl oxides known as Criegee intermediates are produced mainly by ozonolysis of volatile organic compounds containing C[double bond, length as m-dash]C double bonds, such as biogenic terpenoids. Criegee intermediates can react with OH-containing species to produce labile organic hydroperoxides (ROOHs) that are taken up into atmospheric condensed phases. Besides water, alcohols are an important reaction partner of Criegee intermediates and can convert them into α-alkoxyalkyl-hydroperoxides (α-AHs), R1R2C(-OOH)(-OR'). Here, we report a study on the aqueous-phase fates of α-AHs derived from ozonolysis of α-terpineol in the presence of methanol, ethanol, 1-propanol, and 2-propanol. The α-terpineol α-AHs and the decomposition products were detected as their chloride adducts by electrospray mass spectrometry as a function of reaction time. Our discovery that the rate of decomposition of α-AHs increased as the pH decreased from 5.9 to 3.8 implied that the decomposition mechanism was catalyzed by H+. The use of isotope solvent experiments revealed that a primary decomposition product of α-AHs in an acidic aqueous solution was a hemiacetal R1R2C(-OH)(-OR') species that was further transformed into other products such as lactols. The proposed H+-catalyzed decomposition of α-AHs, which provides H2O2 and multifunctional species in ambient aerosol particles, may be faster than other degradation processes (e.g., photolysis by solar radiation).
Collapse
Affiliation(s)
- Mingxi Hu
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Junting Qiu
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.
| |
Collapse
|
21
|
Fang W, Winter P, Richardson JO. Microcanonical Tunneling Rates from Density-of-States Instanton Theory. J Chem Theory Comput 2020; 17:40-55. [PMID: 33351621 DOI: 10.1021/acs.jctc.0c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Semiclassical instanton theory is a form of quantum transition-state theory which can be applied to the computation of thermal reaction rates in complex molecular systems including quantum tunneling effects. There have been a number of attempts to extend the theory to treat microcanonical rates. However, the previous formulations are either computationally unfeasible for large systems due to an explicit sum over states or they involve extra approximations, which make them less reliable. We propose a robust and practical microcanonical formulation called density-of-states instanton theory, which avoids the sum over states altogether. In line with the semiclassical approximations inherent to the instanton approach, we employ the stationary-phase approximation to the inverse Laplace transform to obtain the densities of states. This can be evaluated using only post-processing of the data available from a small set of instanton calculations, such that our approach remains computationally efficient. We show that the new formulation predicts results that agree well with quantum scattering theory for an atom-diatom reaction and with experiments for a photoexcited unimolecular hydrogen transfer in a Criegee intermediate. When the thermal rate is evaluated from a Boltzmann average over our new microcanonical formalism, it can overcome some problems of conventional instanton theory. In particular, it predicts a smooth transition at the crossover temperature and is able to describe bimolecular reactions with pre-reactive complexes such as CH3OH + OH.
Collapse
Affiliation(s)
- Wei Fang
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Pierre Winter
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
22
|
Vansco MF, Caravan RL, Pandit S, Zuraski K, Winiberg FAF, Au K, Bhagde T, Trongsiriwat N, Walsh PJ, Osborn DL, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI. Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. Phys Chem Chem Phys 2020; 22:26796-26805. [PMID: 33211784 DOI: 10.1039/d0cp05018k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2C[double bond, length as m-dash]O+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.
Collapse
Affiliation(s)
- Michael F Vansco
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang B, Li Z. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments. J Phys Chem A 2020; 124:8585-8593. [PMID: 32946233 DOI: 10.1021/acs.jpca.0c06427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Criegee intermediates and alcohols are important species in the atmosphere. In this study, we use quantum chemistry and Born-Oppenheimer molecular dynamics (BOMD) simulations to investigate the reaction between methanol/ethanol and Criegee intermediates (anti- or syn-CH3CHOO) in the gas phase and at the air-water interface. Reactions at the interface are found to be much faster than those in the gas phase. When water molecules are available, loop structures can be formed to facilitate the reaction. In addition, nonloop reaction pathways characterized by the formation of hydrated protons, although with a low possibility, are also identified at the air-water interface. Implications of our results on the fate of Criegee intermediates in the atmosphere are discussed, which deepen our understanding of Criegee intermediate-alcohol chemistry in humid environments.
Collapse
Affiliation(s)
- Bo Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Kuo MT, Takahashi K, Lin JJM. Reactions of Criegee Intermediates are Enhanced by Hydrogen-Atom Relay Through Molecular Design. Chemphyschem 2020; 21:2056-2059. [PMID: 32755027 DOI: 10.1002/cphc.202000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/12/2022]
Abstract
We report a type of highly efficient double hydrogen atom transfer (DHAT) reaction. The reactivities of 3-aminopropanol and 2-aminoethanol towards Criegee intermediates (syn- and anti-CH3 CHOO) were found to be much higher than those of n-propanol and propylamine. Quantum chemistry calculation has confirmed that the main mechanism of these very rapid reactions is DHAT, in which the nucleophilic attack of the NH2 group is catalyzed by the OH group which acts as a bridge of HAT. Typical gas-phase DHAT reactions are termolecular reactions involving two hydrogen bonding molecules; these reactions are typically slow due to the substantial entropy reduction of bringing three molecules together. Putting the reactive and catalytic groups in one molecule circumvents the problem of entropy reduction and allows us to observe the DHAT reactions even at low reactant concentrations. This idea can be applied to improve theoretical predictions for atmospherically relevant DHAT reactions.
Collapse
Affiliation(s)
- Mei-Tsan Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
25
|
Zeng M, Wilson KR. Efficient Coupling of Reaction Pathways of Criegee Intermediates and Free Radicals in the Heterogeneous Ozonolysis of Alkenes. J Phys Chem Lett 2020; 11:6580-6585. [PMID: 32787230 DOI: 10.1021/acs.jpclett.0c01823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the gas phase, ozonolysis of olefins is known to be a significant source of free radicals. However, for heterogeneous and condensed phase ozone reactions, the importance of reaction pathways that couple Criegee intermediates (CI) with hydroxyl (OH), alkoxy, and peroxy free radicals remains uncertain. Here we report experimental evidence for substantial free radical oxidation during the heterogeneous reaction of O3 with cis-9-tricosene (Tri) aerosol. A kinetic model with three coupled submechanisms that include O3, CI, and free radical reactions is used to explain how the observed Tri reactivity and its product distributions depend upon [O3], [OH], and the presence of CI scavengers. During multiphase ozonolysis, the kinetic model predicts that only ∼30% of the alkene is actually consumed by O3, while the remaining ∼70% is consumed by free radicals that cycle through pathways involving CI. These results reveal the importance of free radical oxidation during heterogeneous ozonolysis, which has been previously difficult to isolate due to the complex coupling of CI and OH reaction pathways.
Collapse
Affiliation(s)
- Meirong Zeng
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Craig A. Taatjes
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA
| | - Carl J. Percival
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Carlos Cabezas
- Instituto de Física Fundamental (IFF-CSIC), Group of Molecular Astrophysics, Madrid, Spain
| | | | - Yasuki Endo
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
28
|
Ma X, Zhao X, Wei Y, Wang W, Xu F, Zhang Q, Wang W. Effect of multifunctional compound monoethanolamine on Criegee intermediates reactions and its atmospheric implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136812. [PMID: 32041039 DOI: 10.1016/j.scitotenv.2020.136812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
The reactions of Criegee intermediates with trace gases (such as alcohols, amines, and acids) are primarily dependent on the trace gases' functional group activity. In this study, we used density functional theory calculations and ab initio dynamics simulation methods to explore the synergistic effect of NH2 and OH groups, in the multifunctional compound monoethanolamine (MEA), on the Criegee reaction. The results showed that among the four evaluated MEA configurations, two functional groups in the g'Gg' and tGg' configurations, -NH2 and -OH, have the synergistic effect on the C2 stabilized Criegee intermediates (sCIs). At the gas-liquid interface, sCIs react with NH2 groups of MEA molecules directly or are mediated by water molecules, resulting in additional product formation. The rate calculation indicated that the reaction of sCIs with NH2 groups of MEA molecules is prior to that with OH groups. In addition, OH groups promote the reactions between sCIs and NH2 groups of MEA, while the presence of NH2 groups weakens the reactions of sCIs and OH groups of MEA to some extent. At 298 K, the total rate constant of anti-CH3CHOO with NH2 group of MEA is 4.26 × 10-11 cm3 molecule-1 s-1, which is four orders of magnitude higher than that of anti-CH3CHOO hydration. Under low humidity conditions, the reactions between sCIs and MEA could contribute to the removal of sCIs.
Collapse
Affiliation(s)
- Xiaohui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xianwei Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuanyuan Wei
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wei Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
29
|
Saheb V, Nazari A. The reaction of OH radical with the Criegee intermediate propanone oxide: Theoretical investigations. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Evidence that Criegee intermediates drive autoxidation in unsaturated lipids. Proc Natl Acad Sci U S A 2020; 117:4486-4490. [PMID: 32071215 DOI: 10.1073/pnas.1920765117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autoxidation is an autocatalytic free-radical chain reaction responsible for the oxidative destruction of organic molecules in biological cells, foods, plastics, petrochemicals, fuels, and the environment. In cellular membranes, lipid autoxidation (peroxidation) is linked with oxidative stress, age-related diseases, and cancers. The established mechanism of autoxidation proceeds via H-atom abstraction through a cyclic network of peroxy-hydroperoxide-mediated free-radical chain reactions. For a series of model unsaturated lipids, we present evidence for an autoxidation mechanism, initiated by hydroxyl radical (OH) addition to C=C bonds and propagated by chain reactions involving Criegee intermediates (CIs). This mechanism leads to unexpectedly rapid autoxidation even in the presence of water, implying that as reactive intermediates, CI could play a much more prominent role in chemistries beyond the atmosphere.
Collapse
|
31
|
Smith CD, Karton A. Kinetics and Thermodynamics of Reactions Involving Criegee Intermediates: An Assessment of Density Functional Theory and Ab Initio Methods Through Comparison with CCSDT(Q)/CBS Data. J Comput Chem 2020; 41:328-339. [PMID: 31750964 DOI: 10.1002/jcc.26106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Reactions involving Criegee intermediates (CIs, R1 R2 COO) are important in atmospheric ozonolysis models. In recent years, density functional theory (DFT) and CCSD(T)-based ab initio methods are increasingly being used for modeling reaction profiles involving CIs. We obtain highly accurate CCSDT(Q)/CBS reaction energies and barrier heights for ring-closing reactions involving atmospherically important CIs (R1 /R2 = H, Me, OH, OMe, F, CN, cyclopropene, ethylene, acetaldehyde, and acrolein). We use this benchmark data to evaluate the performance of DFT, double-hybrid DFT (DHDFT), and ab initio methods for the kinetics and thermodynamics of these reactions. We find that reaction energies are more challenging for approximate theoretical procedures than barrier heights. Overall, taking both reaction energies and barrier heights into account, only one of the 58 considered DFT methods (the meta-GGA MN12-L) attains near chemical accuracy, with root-mean-square deviations (RMSDs) of 3.5 (barrier heights) and 4.7 (reaction energies) kJ mol-1 . Therefore, MN12-L is recommended for investigations where CCSD(T)-based methods are not computationally feasible. For reaction barrier heights performance does not strictly follow Jacob's Ladder, for example, DHDFT methods do not perform better than conventional DFT methods. Of the ab initio methods, the cost-effective CCSD(T)/CBS(MP2) approach gives the best performance for both reaction energies and barrier heights, with RMSDs of 1.7 and 1.4 kJ mol-1 , respectively. All the considered Gaussian-n methods show good performance with RMSDs below the threshold of chemical accuracy for both reaction energies and barrier heights, where G4(MP2) shows the best overall performance with RMSDs of 2.9 and 1.5 kJ mol-1 , respectively. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cameron D Smith
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
32
|
Liu Y, Zhou X, Chen Y, Chen M, Xiao C, Dong W, Yang X. Temperature- and pressure-dependent rate coefficient measurement for the reaction of CH2OO with CH3CH2CHO. Phys Chem Chem Phys 2020; 22:25869-25875. [DOI: 10.1039/d0cp04316h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate coefficients of the CH2OO + CH3CH2CHO reaction were studied at temperatures and pressures in the range of 283–318 K and 5–200 Torr.
Collapse
Affiliation(s)
- Yiqiang Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education)
- School of Physics
- Dalian University of Technology
- Dalian
- China
| | - Xiaohu Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology
| | - Yang Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education)
- School of Physics
- Dalian University of Technology
- Dalian
- China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
- Department of Chemistry, Southern University of Science and Technology
| |
Collapse
|
33
|
Cabezas C, Endo Y. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy. Phys Chem Chem Phys 2020; 22:13756-13763. [DOI: 10.1039/d0cp02174a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methoxymethyl hydroperoxide (HOOCH2OCH3) and methoxyethyl hydroperoxide (HOOC(CH3)HOCH3) have been characterized as the nascent reaction products from the reaction of methanol with CH2OO and CH3CHOO, respectively.
Collapse
Affiliation(s)
- Carlos Cabezas
- Instituto de Física Fundamental (IFF-CSIC)
- Group of Molecular Astrophysics
- 28006 Madrid
- Spain
| | - Yasuki Endo
- Department of Applied Chemistry
- Science Building II
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| |
Collapse
|
34
|
Stephenson TA, Lester MI. Unimolecular decay dynamics of Criegee intermediates: Energy-resolved rates, thermal rates, and their atmospheric impact. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2020.1688530] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Thomas A. Stephenson
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, USA
| | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Chao W, Yin C, Takahashi K, Lin JJM. Hydrogen-Bonding Mediated Reactions of Criegee Intermediates in the Gas Phase: Competition between Bimolecular and Termolecular Reactions and the Catalytic Role of Water. J Phys Chem A 2019; 123:8336-8348. [DOI: 10.1021/acs.jpca.9b07117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Chao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Cangtao Yin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Chao W, Lin YH, Yin C, Lin WH, Takahashi K, Lin JJM. Temperature and isotope effects in the reaction of CH 3CHOO with methanol. Phys Chem Chem Phys 2019; 21:13633-13640. [PMID: 31187818 DOI: 10.1039/c9cp02534k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbonyl oxides, also known as Criegee intermediates, are generated from ozonolysis of unsaturated hydrocarbons in the atmosphere. Alcohols are often used as a scavenger of the Criegee intermediates in laboratory studies. In this work, the reaction kinetics of CH3CHOO with methanol vapor was investigated at various temperatures, pressures, and isotopic substitutions using time-resolved UV absorption spectroscopy. The observed rate coefficients of the reaction of anti-CH3CHOO with methanol show a linear dependence on [CH3OH]. The bimolecular rate coefficient was determined to be k1Ha = (4.8 ± 0.5) × 10-12 cm3 s-1 at 298 K and 250 Torr with a negative activation energy Ea = -2.8 ± 0.3 kcal mol-1 for T = 288-315 K [k(T) = A exp(-Ea/RT)]. For the reaction of syn-CH3CHOO with methanol vapor, the observed rate coefficients show a quadratic dependence on [CH3OH], indicating that two methanol molecules participate in the reaction. The termolecular rate coefficient was determined to be k2Hs = (8.0 ± 1.0) × 10-32 cm6 s-1 at 298 K and 250 Torr with a strong negative temperature dependence (Ea = -13.2 ± 0.3 kcal mol-1) at 273-323 K. No significant pressure effect was observed at 250-760 Torr. A kinetic isotope effect, k2Hs/k2Ds = 2.5, was observed by changing CH3OH to CH3OD. Quantum chemistry and transition state theory calculations suggest that the observed isotope effect is mainly attributed to the changes of the vibrational zero-point energies and partition functions while tunneling plays a very minor role. The reaction of syn-CH3CHOO with one CH3OH molecule was not observed in the studied concentration range.
Collapse
Affiliation(s)
- Wen Chao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Yen-Hsiu Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan. and Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Cangtao Yin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Wei-Hong Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan. and Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
37
|
Rousso AC, Hansen N, Jasper AW, Ju Y. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Phys Chem Chem Phys 2019; 21:7341-7357. [DOI: 10.1039/c9cp00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction network of the simplest Criegee intermediate (CI) CH2OO has been studied experimentally during the ozonolysis of ethylene.
Collapse
Affiliation(s)
- Aric C. Rousso
- Department of Mechanical and Aerospace Engineering
- Princeton University
- USA
| | - Nils Hansen
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - Ahren W. Jasper
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Lemont
- USA
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering
- Princeton University
- USA
| |
Collapse
|
38
|
Sun C, Xu B, Lv L, Zhang S. Theoretical investigation on the reaction mechanism and kinetics of a Criegee intermediate with ethylene and acetylene. Phys Chem Chem Phys 2019; 21:16583-16590. [DOI: 10.1039/c9cp02644d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The competition among the possible pathways, the branching ratios of the adduct and the decomposition products at different temperatures and pressures have been evaluated.
Collapse
Affiliation(s)
- Cuihong Sun
- College of Chemical Engineering
- Shijiazhuang University
- Shijiazhuang
- P. R. China
| | - Baoen Xu
- College of Chemical Engineering
- Shijiazhuang University
- Shijiazhuang
- P. R. China
| | - Liqiang Lv
- College of Chemical Engineering
- Shijiazhuang University
- Shijiazhuang
- P. R. China
| | - Shaowen Zhang
- School of Chemistry and Chemical Engineering
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Institute of Technology
- South Zhongguancun Street #5
- Beijing
| |
Collapse
|
39
|
Aroeira GJR, Abbott AS, Elliott SN, Turney JM, Schaefer HF. The addition of methanol to Criegee intermediates. Phys Chem Chem Phys 2019; 21:17760-17771. [DOI: 10.1039/c9cp03480c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High level ab initio methods are employed to study the addition of methanol to the simplest Criegee intermediates and its methylated analogue. Kinetic rate constants over a range of temperatures are computed and compared to experimental results.
Collapse
Affiliation(s)
| | - Adam S. Abbott
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| | - Sarah N. Elliott
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| | - Justin M. Turney
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| |
Collapse
|