1
|
Cojocariu I, Perilli D, Feyer V, Jugovac M. Graphene-Molecule Hybridization at a Ferromagnetic Interface. Chemistry 2024; 30:e202400857. [PMID: 38842468 DOI: 10.1002/chem.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The introduction of a graphene (Gr) buffer layer between a ferromagnetic substrate and a metallorganic molecule is known to mediate the magnetic coupling between them, an effect attributed to a weak hybridization between graphene and molecule. In this paper, we present experimental evidence of this effect through a detailed investigation of the frontier electronic properties of iron phthalocyanine deposited on cobalt-supported graphene. Despite being physisorbed, the molecular adsorption on Gr/Co induces a sizeable charge transfer from graphene to the molecular macrocycle leading to the partial occupation of the LUMO and the appearance of an energetically localized hybrid state, which can be attributed to the overlap between the graphene pz state and the molecular macrocycle. Graphene is not inert either; the adsorption of the molecule induces doping and alters the Fermi velocity of both the hybrid minicone state and the Dirac cone. Similar effects are observed when the molecular periphery is decorated with fluorine atoms, known for their electron-withdrawing properties, with minimal changes in the energy alignment.
Collapse
Affiliation(s)
- Iulia Cojocariu
- Dipartimento di Fisica, Università degli Studi di Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza S.S. 14, Km 163.5, 34149, Trieste, Italy
| | - Daniele Perilli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Matteo Jugovac
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza S.S. 14, Km 163.5, 34149, Trieste, Italy
| |
Collapse
|
2
|
Davoudi Tanha S, Modarresi M, Roknabadi MR, Hu T, Mogulkoc A. The antiferromagnetic phase of a wurtzite nickel sulfide monolayer. Phys Chem Chem Phys 2024; 26:22403-22412. [PMID: 39140172 DOI: 10.1039/d4cp01823k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Two-dimensional intrinsic long-range magnetic monolayers with high transition temperatures have attracted great interest in both fundamental studies and practical applications. In this study, we use a combination of first-principles calculations based on density functional theory (DFT), and unitary transformation of the effective Heisenberg model to investigate the electronic structure and magnetic properties of a [NiS]2 monolayer. The phonon calculations reveal that the [NiS]2 monolayer is dynamically stable in the wurtzite phase. This material is an out-of-plane easy-axis antiferromagnetically ordered monolayer with the Néel temperature close to room temperature. The intrinsic AFM ground state arises from the presence of top and bottom FM sublattices coupled together via AFM coupling, in which the net magnetic moment of each Ni atom is evaluated as 0.5μB. The spectrum of the spin-wave of [NiS]2 is investigated within the spin-wave theory of antiferromagnets in terms of the first-order Holstein-Primakoff approximation of the anisotropic Heisenberg model combined with the Bogoliubov diagonalization transformation. For the long wavelength limit, the magnon dispersion shows linear behavior with the wave vector, which is expected for conventional antiferromagnetism. The magnon velocity of approximately ∼600 m s-1 is predicted for the [NiS]2 monolayer by calculating the slope of the magnon spectrum. Due to strong spin-orbit coupling, the [NiS]2 monolayer has relatively large magnetic anisotropy energy, causing the existence of the 12 meV gap at the Γ point in the magnon spectrum. The magnon energy gap limits the number of thermally excited states, which is essential for maintaining intrinsic long-range antiferromagnetic order in two dimensions.
Collapse
Affiliation(s)
- S Davoudi Tanha
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - M Modarresi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - M R Roknabadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - T Hu
- School of Materials Science and Engineering, State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200444, China.
| | - A Mogulkoc
- Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara, Turkey
| |
Collapse
|
3
|
Hutchison P, Smith LE, Rooney CL, Wang H, Hammes-Schiffer S. Proton-Coupled Electron Transfer Mechanisms for CO 2 Reduction to Methanol Catalyzed by Surface-Immobilized Cobalt Phthalocyanine. J Am Chem Soc 2024; 146:20230-20240. [PMID: 38984971 DOI: 10.1021/jacs.4c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Immobilized cobalt phthalocyanine (CoPc) is a highly promising architecture for the six-proton, six-electron reduction of CO2 to methanol. This electroreduction process relies on proton-coupled electron transfer (PCET) reactions that can occur by sequential or concerted mechanisms. Immobilization on a conductive support such as carbon nanotubes or graphitic flakes can fundamentally alter the PCET mechanisms. We use density functional theory (DFT) calculations of CoPc adsorbed on an explicit graphitic surface model to investigate intermediates in the electroreduction of CO2 to methanol. Our calculations show that the alignment of the CoPc and graphitic electronic states influences the reductive chemistry. These calculations also distinguish between charging the graphitic surface and reducing the CoPc and adsorbed intermediates as electrons are added to the system. This analysis allows us to identify the chemical transformations that are likely to be concerted PCET, defined for these systems as the mechanism in which protonation of a CO2 reduction intermediate is accompanied by electron abstraction from the graphitic surface to the adsorbate without thermodynamically stable intermediates. This work establishes a mechanistic pathway for methanol production that is consistent with experimental observations and provides fundamental insight into how immobilization of the CoPc impacts its CO2 reduction chemistry.
Collapse
Affiliation(s)
- Phillips Hutchison
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Logan E Smith
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Bajaj A, Duan C, Nandy A, Taylor MG, Kulik HJ. Molecular orbital projectors in non-empirical jmDFT recover exact conditions in transition-metal chemistry. J Chem Phys 2022; 156:184112. [DOI: 10.1063/5.0089460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition-metal chemistry. Here, we demonstrate the judiciously modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition-metal complexes. We curate a set of nine representative Ti(III) and V(IV) d1 transition-metal complexes and evaluate their flat-plane errors along the fractional spin and charge lines. We demonstrate that while jmDFT improves upon both DFT+U and semi-local DFT with the standard atomic orbital projectors (AOPs), it does so inefficiently. We rationalize these inefficiencies by quantifying hybridization in the relevant frontier orbitals. To overcome these limitations, we introduce a procedure for computing a molecular orbital projector (MOP) basis for use with jmDFT. We demonstrate this single set of d1 MOPs to be suitable for nearly eliminating all energetic delocalization error and static correlation error. In all cases, MOP jmDFT outperforms AOP jmDFT, and it eliminates most flat-plane errors at non-empirical values. Unlike DFT+U or hybrid functionals, jmDFT nearly eliminates energetic delocalization error and static correlation error within a non-empirical framework.
Collapse
Affiliation(s)
- Akash Bajaj
- Massachusetts Institute of Technology, United States of America
| | - Chenru Duan
- Massachusetts Institute of Technology, United States of America
| | - Aditya Nandy
- Massachusetts Institute of Technology, United States of America
| | | | - Heather J. Kulik
- Dept of Chemical Engineering, Massachusetts Institute of Technology, United States of America
| |
Collapse
|
5
|
Bajaj A, Kulik HJ. Eliminating Delocalization Error to Improve Heterogeneous Catalysis Predictions with Molecular DFT + U. J Chem Theory Comput 2022; 18:1142-1155. [PMID: 35081711 DOI: 10.1021/acs.jctc.1c01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Approximate semilocal density functional theory (DFT) is known to underestimate surface formation energies yet paradoxically overbind adsorbates on catalytic transition-metal oxide surfaces due to delocalization error. The low-cost DFT + U approach only improves surface formation energies for early transition-metal oxides or adsorption energies for late transition-metal oxides. In this work, we demonstrate that this inefficacy arises due to the conventional usage of metal-centered atomic orbitals as projectors within DFT + U. We analyze electron density rearrangement during surface formation and O atom adsorption on rutile transition-metal oxides to highlight that a standard DFT + U correction fails to tune properties when the corresponding density rearrangement is highly delocalized across both metal and oxygen sites. To improve both surface properties simultaneously while retaining the simplicity of a single-site DFT + U correction, we systematically construct multi-atom-centered molecular-orbital-like projectors for DFT + U. We demonstrate this molecular DFT + U approach for tuning adsorption energies and surface formation energies of minimal two-dimensional models of representative early (i.e., TiO2) and late (i.e., PtO2) transition-metal oxides. Molecular DFT + U simultaneously corrects adsorption energies and surface formation energies of multilayer models of rutile TiO2(110) and PtO2(110) to resolve the paradoxical description of surface stability and surface reactivity of semilocal DFT.
Collapse
Affiliation(s)
- Akash Bajaj
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Mabrouk M, Majewski JA. Stability, electronic structure, and magnetic moment of vanadium phthalocyanine grafted to the Au(1 1 1) surface. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Bajaj A, Kulik HJ. Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error. J Phys Chem Lett 2021; 12:3633-3640. [PMID: 33826346 DOI: 10.1021/acs.jpclett.1c00796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While density functional theory (DFT) is widely applied for its combination of cost and accuracy, corrections (e.g., DFT+U) that improve it are often needed to tackle correlated transition-metal chemistry. In principle, the functional form of DFT+U, consisting of a set of localized atomic orbitals (AOs) and a quadratic energy penalty for deviation from integer occupations of those AOs, enables the recovery of the exact conditions of piecewise linearity and the derivative discontinuity. Nevertheless, for practical transition-metal complexes, where both atomic states and ligand orbitals participate in bonding, standard DFT+U can fail to eliminate delocalization error (DE). Here, we show that by introducing an alternative valence-state (i.e., molecular orbital or MO) basis to the DFT+U approach, we recover exact conditions in cases for which standard DFT+U corrections have no error-reducing effect. This MO-based DFT+U also eliminates DE where standard AO-based DFT+U is already successful. We demonstrate the transferability of our approach on representative transition-metal complexes with a range of ligand field strengths, electron configurations (i.e., from Sc to Zn), and spin states.
Collapse
Affiliation(s)
- Akash Bajaj
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|