1
|
Ruscic B, Bross DH. Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry. Faraday Discuss 2025; 256:345-372. [PMID: 39300834 DOI: 10.1039/d4fd00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Active Thermochemical Tables (ATcT) were successfully used to resolve the existing inconsistencies related to the thermochemistry of glycine, based on statistically analyzing and solving a thermochemical network that includes >3350 chemical species interconnected by nearly 35 000 thermochemically-relevant determinations from experiment and high-level theory. The current ATcT results for the 298.15 K enthalpies of formation are -394.70 ± 0.55 kJ mol-1 for gas phase glycine, -528.37 ± 0.20 kJ mol-1 for solid α-glycine, -528.05 ± 0.22 kJ mol-1 for β-glycine, -528.64 ± 0.23 kJ mol-1 for γ-glycine, -514.22 ± 0.20 kJ mol-1 for aqueous undissociated glycine, and -470.09 ± 0.20 kJ mol-1 for fully dissociated aqueous glycine at infinite dilution. In addition, a new set of thermophysical properties of gas phase glycine was obtained from a fully corrected nonrigid rotor anharmonic oscillator (NRRAO) partition function, which includes all conformers. Corresponding sets of thermophysical properties of α-, β-, and γ-glycine are also presented.
Collapse
Affiliation(s)
- Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA.
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA.
| |
Collapse
|
2
|
Santacruz W, Fiori I, de Mello R, Motheo AJ. Detection of radicals produced during electro-oxidation of atrazine using commercial DSA®-Cl 2 in methanol media: Keys to understand the process. CHEMOSPHERE 2022; 307:136157. [PMID: 36029853 DOI: 10.1016/j.chemosphere.2022.136157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
This work reports the radicals detected and identified during the degradation of atrazine in methanol medium in the presence and absence of different proportions of water (0%, 5%, and 10%). The determination of these radicals is an important step to understand the electrolysis processes in methanol medium and contribute to clarify the degradation mechanism. Furthermore, the parameters for the successful removal of the contaminant were optimized and the results showed that the application of the technique led to the removal of nearly 99.8% of atrazine after 1 h of electrolysis. The oxidation kinetics was found to be very fast and most of the atrazine molecule in the medium was degraded in the first hour of electrolysis. The results obtained from a thorough analysis conducted with a view to evaluating the effects of different current densities and initial pH values on atrazine degradation showed that the application of higher current densities resulted in lower energy consumption, as this led to faster removal of atrazine. Additionally, the initial pH of the solution was found to favor the formation of different species of active chlorine. The radicals formed during the electro-oxidation process were detected by electron paramagnetic resonance spectroscopy and include hydroxyl, methoxy and hydroxymethyl. The use of methanol for the degradation of pollutants is a highly promising technique and this work shows that the identification of the different radicals formed in the process can be the key to understanding the degradation mechanism.
Collapse
Affiliation(s)
- William Santacruz
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil
| | - Isabela Fiori
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil
| | - Rodrigo de Mello
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil.
| |
Collapse
|
3
|
McKee K, Blitz MA, Shannon RJ, Pilling MJ. HO 2 + NO 2: Kinetics, Thermochemistry, and Evidence for a Bimolecular Product Channel. J Phys Chem A 2022; 126:7514-7522. [PMID: 36215659 DOI: 10.1021/acs.jpca.2c04601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A master equation (ME) analysis of available experimental data has been carried out on the reaction HO2 + NO2 + M ⇋ HO2NO2 + M (1a)/(-1a). The analysis, based on the ME code MESMER, uses both the association and dissociation kinetic data from the literature, and provides improved thermochemistry on reaction 1a. Our preferred model assigns two low-frequency vibrations of HO2NO2 as hindered rotors and couples these to the external rotations. This model gives ΔrH°0(1a) = -93.9 ± 1.0 kJ mol-1, which implies that ΔfH°0 HO2NO2 = -42.0 ± 1.0 kJ mol-1 (uncertainties are 2σ). A significant contributor to the uncertainty derives from modeling the interaction between the internal and external rotors. Using this improved kinetics for reaction 1a/-1a, data at elevated temperatures, 353-423 K, which show no evidence of the expected equilibration, have been reanalyzed, indicating that an additional reaction is occurring that masks the equilibration. Based on a published ab initio study, this additional channel is assigned to the bimolecular reaction HO2 + NO2 → H-NO2 + O2 (1b); H-NO2 is nitryl hydride and has not previously been directly observed in experiments. The output of the master equation analysis has been parametrized and Troe expressions are provided for an improved description of k1a(p,T) and k-1a(p,T).
Collapse
Affiliation(s)
- Kenneth McKee
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - Mark A Blitz
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K.,National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, U.K
| | - Robin J Shannon
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | | |
Collapse
|
4
|
Nguyen TL, Bross DH, Ruscic B, Ellison GB, Stanton J. Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5. Faraday Discuss 2022; 238:405-430. [DOI: 10.1039/d1fd00124h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-level coupled cluster theory, in conjunction with Active Thermochemical Tables (ATcT) and E,J-resolved master equation calculations were used in a study of the title reactions, which play an important role...
Collapse
|
5
|
Blitz MA, Pilling MJ, Robertson SH, Seakins PW, Speak TH. Global Master Equation Analysis of Rate Data for the Reaction C 2H 4 + H ⇄ C 2H 5: Δ fH0⊖C 2H 5. J Phys Chem A 2021; 125:9548-9565. [PMID: 34704447 DOI: 10.1021/acs.jpca.1c05911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While forward and reverse rate constants are frequently used to determine enthalpies of reaction and formation, this process is more difficult for pressure-dependent association/dissociation reactions, especially since the forward and reverse reactions are usually studied at very different temperatures. The problems can be overcome by using a data-fitting procedure based on a master equation model. This approach has been applied to existing experimental pressure-dependent forward and reverse rate coefficients for the reaction C2H4 + H ⇄ C2H5 (k1, k-1) using the MESMER code to determine ΔfH0⊖C2H5 from the enthalpy of the reaction. New measurements of k1, k-1 were included in analysis. They are based on laser flash photolysis with direct observation of H atom time profiles by vacuum ultraviolet laser-induced fluorescence under conditions where the approach to equilibrium could be observed. Measurements were made over the temperature range 798-828 K and with [He] from 2.33 to 7.21 × 1018 molecule cm-3. These data were then combined with a wide range of existing experimental data with helium as the bath gas (112 measurements of k1 and k-1, covering the temperature range 285-1094 K, and [He] = 7.1 × 1015-1.9 × 1019 molecule cm-3) and fitted using the master equation solver MESMER. The required vibrational frequencies and rotational constants of the system were obtained from ab initio calculations, and the activation threshold for association (ΔEthresh), enthalpy of reaction (ΔrH0⊖), imaginary frequency (υimag), and helium energy-transfer parameters (⟨ΔE⟩d,298(T/298)n) were optimized. The resulting parameters (errors are 2σ) are ΔEthresh = 11.43 ± 0.34 kJ mol-1, ΔrH0⊖ = -145.34 ± 0.60 kJ mol-1, υimag = 730 ± 130 cm-1, ⟨ΔE⟩d,298 = 54.2 ± 7.6 cm-1, and n = 1.17 ± 0.12. A value of ΔfH298.15⊖(C2H5) = 120.49 ± 0.57 kJ mol-1 is obtained by combining ΔrH0⊖ with standard enthalpies of formation for H and C2H4 and making the appropriate temperature corrections. The dependence of these parameters on how the internal rotor and CH2 inversion modes are treated has been explored. The experimental data for other bath gases have been analyzed, and data sets compatible with the potential energy surface parameters determined above have been identified. The parameters are virtually identical but with slightly smaller error limits. Parameterization of k1, k-1 using the Troe formalization has been used to investigate competition between ethyl decomposition and reaction with oxygen under combustion conditions.
Collapse
Affiliation(s)
- Mark A Blitz
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.,National Centre for Atmospheric Science (NCAS), University of Leeds, Leeds LS2 9JT, U.K
| | | | | | - Paul W Seakins
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Thomas H Speak
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
6
|
Ruscic B, Bross DH. Active Thermochemical Tables: the thermophysical and thermochemical properties of methyl, CH3, and methylene, CH2, corrected for nonrigid rotor and anharmonic oscillator effects. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1969046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - David H. Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| |
Collapse
|
7
|
Nguyen TL, Ravishankara AR, Franke PR, Stanton JF. Thermal Decomposition of CH 3O: A Curious Case of Pressure-Dependent Tunneling Effects. J Phys Chem A 2021; 125:6761-6771. [PMID: 34343002 DOI: 10.1021/acs.jpca.1c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermal unimolecular decomposition of a methoxy radical (CH3O), a key intermediate in the combustion of methane, methanol, and other hydrocarbons, was studied using high-level coupled-cluster calculations, followed by E,J-resolved master equation analyses. The experimental results available for a wide range of temperature and pressure are in striking agreement with the calculations. In line with a previous theoretical study that used a one-dimensional master equation, the tunneling correction is found to exhibit a marked pressure dependence, being the largest at low pressure. This curious effect on the tunneling enhancement also affects the calculated kinetic isotope effect, which falls initially with pressure but is predicted to rise again at high pressures. These findings serve to reconcile a set of conflicting results regarding the importance of tunneling in this prototype unimolecular reaction and also motivate further experimental investigation. This study also exemplifies how changes in the energy redistribution due to collisions manifest in the tunneling rates.
Collapse
Affiliation(s)
- Thanh Lam Nguyen
- Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States
| | - A R Ravishankara
- Departments of Chemistry and Atmospheric Sciences, Colorado State University, Ft. Collins, Colorado 80523, United States
| | - Peter R Franke
- Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States
| | - John F Stanton
- Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Zaleski DP, Sivaramakrishnan R, Weller HR, Seifert NA, Bross DH, Ruscic B, Moore KB, Elliott SN, Copan AV, Harding LB, Klippenstein SJ, Field RW, Prozument K. Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm. J Am Chem Soc 2021; 143:3124-3142. [PMID: 33615780 DOI: 10.1021/jacs.0c11677] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermochemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, we observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone's methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.
Collapse
Affiliation(s)
- Daniel P Zaleski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, Colgate University, Hamilton, New York 13346, United States
| | - Raghu Sivaramakrishnan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hailey R Weller
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nathan A Seifert
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kevin B Moore
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andreas V Copan
- Emmanuel College, Natural Sciences Department, Franklin Springs, Georgia 30639, United States
| | - Lawrence B Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert W Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kirill Prozument
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|