1
|
Gul F, Ahmad S, Khan K, Masood R, Siddique F, Bibi M, Aljahdali SM, Aljasir MA, Jassim TS, Wei DQ, Irfan M. Identification of Novel Drug Molecules Against NS3-Like Helicase Enzyme of Alongshan Virus. Mol Biotechnol 2024:10.1007/s12033-024-01326-z. [PMID: 39643757 DOI: 10.1007/s12033-024-01326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Alongshan virus (ALSV) is a novel tick-borne virus associated with human diseases. The ALSV is a segmented flavivirus from the family Flaviviridae. It is currently considered as tick-borne arbovirus. There is a high incidence of fever and headache among patients with ALSV infection, and some patients also present with fatigue, coma, depression, nausea, myalgia/arthralgia, and skin rashes. Neither a licensed vaccine nor a drug is currently available to treat ALSV. The development of new, practical, and innovative therapeutic approaches is needed to overcome the emergence of the pathogen. Research on drugs remains a complex, time-consuming, and expensive. The field of drug development has undergone a revolution due to the use of computational approaches, which provide several benefits that speed up and improve the process of developing novel drugs. The goal of this study is to identify novel drug-like molecules against NS3-like helicase enzyme of Alongshan virus. Using molecular docking, the binding potential of the top three ligands to the specified target was determined. Molecular dynamic simulations were used to identify the stabilities of the best-docked conformations followed by energy calculations and ADMET analysis. Three potential and promising compounds were identified by performing structure-based virtual screening of non-structural protein 3 (NS3) like helicase of Alongshan virus. The best-docked complexes identified through virtual screening were BDC-23169381, BDB-26412846, BDB-2641954. All these compounds had good pharmacokinetics characteristics and were identified as drug like.
Collapse
Affiliation(s)
- Fizza Gul
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, 473006, People's Republic of China.
| | - Kalsoom Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800, Pakistan
| | - Mehvish Bibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800, Pakistan
| | | | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Tabarak Sabah Jassim
- Department of Plant Biotechnology, College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Dong-Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, 473006, People's Republic of China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Ljubic M, D'Ercole C, Waheed Y, de Marco A, Borišek J, De March M. Computational study of the HLTF ATPase remodeling domain suggests its activity on dsDNA and implications in damage tolerance. J Struct Biol 2024; 216:108149. [PMID: 39491691 DOI: 10.1016/j.jsb.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The Helicase-Like Transcription Factor (HLTF) is member of the SWI/SNF-family of ATP dependent chromatin remodellers known primarily for maintaining genome stability. Biochemical and cellular assays support its multiple roles in DNA Damage Tolerance. However, the lack of sufficient structural data limits the comprehension of the molecular basis of its modes of action. In this work we have modelled and characterized the HLTF ATPase remodeling domain by using bioinformatic tools and all-atoms molecular dynamics simulations. In-silico results suggested that its binding to dsDNA is mainly mediated by the positively charged residues Arg563 and Lys913, found conserved in HLTF homologs, and Arg620 and Lys999, found only in HLTF. Interestingly, these residues are mutated in cancer cells. During translocation on dsDNA, HLTF remains persistently bound through the N-terminal ATPase subunit. However, DNA advancement occurs only in the presence of the synergic-anticorrelated action of both motor lobes. In contrast, the C-terminal facilitates substrate remodeling through DNA deformation and generation of bulges according to a wave-model. Finally, the large conformational change suggested between the two motor-remodeling subunits might be activated upon the release of PARP1 on stalled fork and be responsible for the intervention of HLTF-HIRAN in the formation of D-loop and 4-way junction DNA structures.
Collapse
Affiliation(s)
- Martin Ljubic
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Claudia D'Ercole
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia
| | - Yossma Waheed
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia; National Institute of Science and Technology, Sector H-12, Islamabad Capital Territory, Pakistan
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Matteo De March
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia.
| |
Collapse
|
3
|
Ormazábal A, Palma J, Pierdominici-Sottile G. Dynamics and Function of sRNA/mRNAs Under the Scrutiny of Computational Simulation Methods. Methods Mol Biol 2024; 2741:207-238. [PMID: 38217656 DOI: 10.1007/978-1-0716-3565-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Molecular dynamics simulations have proved extremely useful in investigating the functioning of proteins with atomic-scale resolution. Many applications to the study of RNA also exist, and their number increases by the day. However, implementing MD simulations for RNA molecules in solution faces challenges that the MD practitioner must be aware of for the appropriate use of this tool. In this chapter, we present the fundamentals of MD simulations, in general, and the peculiarities of RNA simulations, in particular. We discuss the strengths and limitations of the technique and provide examples of its application to elucidate small RNA's performance.
Collapse
Affiliation(s)
- Agustín Ormazábal
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Juliana Palma
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Gustavo Pierdominici-Sottile
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
4
|
Nucleo-Cytoplasmic Transport of ZIKV Non-Structural 3 Protein Is Mediated by Importin-α/β and Exportin CRM-1. J Virol 2023; 97:e0177322. [PMID: 36475764 PMCID: PMC9888292 DOI: 10.1128/jvi.01773-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/β) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.
Collapse
|