1
|
Thompson NB, Mulfort KL, Tiede DM. Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements. IUCRJ 2024; 11:423-433. [PMID: 38700232 PMCID: PMC11067739 DOI: 10.1107/s2052252524003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Appreciating that the role of the solute-solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime-where sub-ångström spatial resolution is achieved-remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography.
Collapse
Affiliation(s)
- Niklas B. Thompson
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 USA
| | - Karen L. Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 USA
| | - David M. Tiede
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 USA
| |
Collapse
|
2
|
Mascarenhas EJ, Fondell M, Büchner R, Eckert S, Vaz da Cruz V, Föhlisch A. The Role of the Lowest Excited Triplet State in Defining the Rate of Photoaquation of Hexacyanometalates. J Phys Chem Lett 2024; 15:241-247. [PMID: 38164541 PMCID: PMC10788954 DOI: 10.1021/acs.jpclett.3c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Photosolvation is a type of ligand substitution reaction started by irradiation of a solution with light, triggering the replacement of a ligand with a molecule from the solvent. The excited state is created through many possible pathways. For the class of hexacyanides of groups 8 and 9 of the periodic table, irradiation in the ligand field band is followed by intersystem crossing to the lowest excited triplet state, which we propose to mediate the photoaquation reaction in this class of complexes. In this study, we present time-resolved X-ray absorption data showing indications of the triplet intermediate state in the cobalt(III) hexacyanide complex and we discuss general aspects of the photoaquation reaction in comparison with reported data on the isoelectronic iron(II) hexacyanide. Quantum chemical calculations are analyzed and suggest that the nature of the lowest excited triplet state in each complex can explain the drastically different rate of reactions observed.
Collapse
Affiliation(s)
- Eric J. Mascarenhas
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Robby Büchner
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinicius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institute
of Physics and Astronomy, Universität
Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Malme JT, Clendening RA, Ash R, Curry T, Ren T, Vura-Weis J. Nanosecond Metal-to-Ligand Charge-Transfer State in an Fe(II) Chromophore: Lifetime Enhancement via Nested Potentials. J Am Chem Soc 2023; 145:6029-6034. [PMID: 36913625 DOI: 10.1021/jacs.2c13532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Examples of Fe complexes with long-lived (≥1 ns) charge-transfer states are limited to pseudo-octahedral geometries with strong σ-donor chelates. Alternative strategies based on varying both coordination motifs and ligand donicity are highly desirable. Reported herein is an air-stable, tetragonal FeII complex, Fe(HMTI)(CN)2 (HMTI = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene), with a 1.25 ns metal-to-ligand charge-transfer (MLCT) lifetime. The structure has been determined, and the photophysical properties have been examined in a variety of solvents. The HMTI ligand is highly π-acidic due to low-lying π*(C═N), which enhances ΔFe via stabilizing t2g orbitals. The inflexible geometry of the macrocycle results in short Fe-N bonds, and density functional theory calculations show that this rigidity results in an unusual set of nested potential energy surfaces. Moreover, the lifetime and energy of the MLCT state depends strongly on the solvent environment. This dependence is caused by modulation of the axial ligand-field strength by Lewis acid-base interactions between the solvent and the cyano ligands. This work represents the first example of a long-lived charge transfer state in an FeII macrocyclic species.
Collapse
Affiliation(s)
- Justin T Malme
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Reese A Clendening
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan Ash
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taylor Curry
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Zederkof DB, Møller KB, Nielsen MM, Haldrup K, González L, Mai S. Resolving Femtosecond Solvent Reorganization Dynamics in an Iron Complex by Nonadiabatic Dynamics Simulations. J Am Chem Soc 2022; 144:12861-12873. [PMID: 35776920 PMCID: PMC9305979 DOI: 10.1021/jacs.2c04505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The ultrafast dynamical
response of solute–solvent interactions
plays a key role in transition metal complexes, where charge transfer
states are ubiquitous. Nonetheless, there exist very few excited-state
simulations of transition metal complexes in solution. Here, we carry
out a nonadiabatic dynamics study of the iron complex [Fe(CN)4(bpy)]2– (bpy = 2,2′-bipyridine)
in explicit aqueous solution. Implicit solvation models were found
inadequate for reproducing the strong solvatochromism in the absorption
spectra. Instead, direct solute–solvent interactions, in the
form of hydrogen bonds, are responsible for the large observed solvatochromic
shift and the general dynamical behavior of the complex in water.
The simulations reveal an overall intersystem crossing time scale
of 0.21 ± 0.01 ps and a strong reliance of this process
on nuclear motion. A charge transfer character analysis shows a branched
decay mechanism from the initially excited singlet metal-to-ligand
charge transfer (1MLCT) states to triplet states of 3MLCT and metal-centered (3MC) character. We also
find that solvent reorganization after excitation is ultrafast, on
the order of 50 fs around the cyanides and slower around the
bpy ligand. In contrast, the nuclear vibrational dynamics, in the
form of Fe–ligand bond changes, takes place on slightly longer
time scales. We demonstrate that the surprisingly fast solvent reorganizing
should be observable in time-resolved X-ray solution scattering experiments,
as simulated signals show strong contributions from the solute–solvent
scattering cross term. Altogether, the simulations paint a comprehensive
picture of the coupled and concurrent electronic, nuclear, and solvent
dynamics and interactions in the first hundreds of femtoseconds after
excitation.
Collapse
Affiliation(s)
- Diana Bregenholt Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark.,Scientific Instrument Femtosecond X-ray Experiments, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet, bygning 207, 2800 Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
5
|
Jay RM, Kunnus K, Wernet P, Gaffney KJ. Capturing Atom-Specific Electronic Structural Dynamics of Transition-Metal Complexes with Ultrafast Soft X-Ray Spectroscopy. Annu Rev Phys Chem 2022; 73:187-208. [DOI: 10.1146/annurev-physchem-082820-020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstrate femtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Raphael M. Jay
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kristjan Kunnus
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California, USA
| |
Collapse
|
6
|
Huang TH, Luo C, Zhao FZ, Zheng D, Hu QL, Jia L. Influence of different solvents on structures and electronic properties of new Fe2S2 complexes containing bis(2-diphenylphosphinophenyl)ether. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|