1
|
Wysokowski M, Luu RK, Arevalo S, Khare E, Stachowiak W, Niemczak M, Jesionowski T, Buehler MJ. Untapped Potential of Deep Eutectic Solvents for the Synthesis of Bioinspired Inorganic-Organic Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7878-7903. [PMID: 37840775 PMCID: PMC10568971 DOI: 10.1021/acs.chemmater.3c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Indexed: 10/17/2023]
Abstract
Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Rachel K. Luu
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Sofia Arevalo
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Eesha Khare
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Witold Stachowiak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Michał Niemczak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Markus J. Buehler
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
He B, Cui Y, Lei Y, Li W, Sun J. Design and application of g-C 3N 4-based materials for fuels photosynthesis from CO 2 or H 2O based on reaction pathway insights. J Colloid Interface Sci 2023; 629:825-846. [PMID: 36202027 DOI: 10.1016/j.jcis.2022.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Photocatalytic CO2 reduction reaction (CRR) and hydrogen evolution reaction (HER) based on graphitic carbon nitride (g-C3N4) that is regarded as the metal-free "holy grail" photocatalyst, provide promising strategies for producing next-generation fuels, contributing to achieving carbon neutrality, alleviating energy and environment crisis. However, the activity of CRR and HER over g-C3N4 leaves much to be desired. Therefore, numerous studies have sprung up to enhance photoactivity. A comprehensive understanding of the CRR and HER reaction pathways is crucial for designing g-C3N4-based materials, further promoting efficient fuel production. Different from previous reviews that focus on g-C3N4 modification from the viewpoint of material science. In this review, we divided the multistep processes of CRR and HER into five reaction pathways and summarized the latest advances for improving each pathway of fuels synthesis through CRR or HER. Meanwhile, the existing bottleneck issues of each step were also discussed. Finally, comprehensive conclusions, including the remaining challenges, outlooks, etc., for CRR and HER over g-C3N4 were put forward. We are sure that this review will conduce to the understanding of the structure-activity relationship between CRR, HER processes, and g-C3N4 structure, which can provide the reference for developing high-powered photocatalysts, not confined to g-C3N4.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuandong Cui
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu Lei
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wenjin Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
3
|
Faizan M, Saeed A, Song P, Zhang R, Liu R, Chang Z, Wu L, Zhang M. Fabrication of CdxZn1−xS@VPO (x = 0.2) Nanocomposites for n-Butane Selective Oxidation Toward Maleic Anhydride. Catal Letters 2022. [DOI: 10.1007/s10562-022-04170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
The Critical Role of Steam during Activation Process on the Catalytic Performance of VPO for n-Butane Selective Oxidation to Maleic Anhydride. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Jiang B, Yuan S, Tong M, Wang H, Yu Y, Huang Z, Yang Y, Wang J, Yang Y. Influence of the Structural Characteristics of VPO Catalysts on the Temperature Sensitivity of the Oxidation Reaction of n-Butane to Maleic Anhydride. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Binbo Jiang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shilin Yuan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Mingliang Tong
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haibo Wang
- Dalian Research Institute of Petroleum and Petrochemicals, Sinopec, Dalian 116045, P. R. China
| | - Yue Yu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengliang Huang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yao Yang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jingdai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, P. R. China
| | - Yongrong Yang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
6
|
Faizan M, Li H, Liu Y, Li K, Wei S, Zhang R, Liu R. Copper-based deep eutectic solvents (Cu-DES) assisted the VPO catalyst as a structural and electronic promoter for n-butane selective oxidation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Dual Nature Cupper-Based Ionic Liquid-Assisted n-Butane Selective Oxidation with a Vanadium Phosphorus Oxide Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-022-03962-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Faizan M, Zhang R, Liu R. Vanadium Phosphorus Oxide Catalyst: Progress, Development and Applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
|
10
|
Wang B, Dai F, Jiang L, Zhang R, Chu G, Liu R, Luo Y. A vanadium phosphorus oxide catalyst synthesized in rotating packed bed for high‐efficiency selective oxidation of
n
‐butane. AIChE J 2021. [DOI: 10.1002/aic.17495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bao‐Ju Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing PR China
| | - Fei Dai
- Institute of Process Engineering Chinese Academy of Sciences Beijing PR China
| | - Lan Jiang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing PR China
| | - Ruirui Zhang
- Institute of Process Engineering Chinese Academy of Sciences Beijing PR China
| | - Guang‐Wen Chu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing PR China
| | - Ruixia Liu
- Institute of Process Engineering Chinese Academy of Sciences Beijing PR China
| | - Yong Luo
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing PR China
| |
Collapse
|
11
|
Mono-, Bi-, and Tri-Metallic DES Are Prepared from Nb, Zr, and Mo for n-Butane Selective Oxidation via VPO Catalyst. Processes (Basel) 2021. [DOI: 10.3390/pr9091487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent work, deep eutectic solvents (DESs) as ionic liquid analogues have been abundantly used in catalysis. Herein, vanadium phosphorus oxide (VPO) catalysts were synthesized from mono-, bi-, and tri- metallic DES of Nb, Zr, and Mo metal dopants as structure-directing agents and electronic promoters for n-butane selective oxidation towards maleic anhydride. Higher MA selectivity and larger n-butane conversion was successfully obtained using the newly developed catalysts, while oxidation by-product COx (CO, CO2) was minimized. Characterization techniques including FTIR, DSC, XRD, TEM, SEM, EDS, Raman spectroscopy, TGA, XPS, and NH3-TPD were employed to fully characterize the DESs, precursors and catalysts. This work led to an increase of 7.8% in MA mass yield with 16% more n-butane conversion as compared to an unpromoted VPO catalyst. Moreover, the utilization of a low-carbon alkane brought in a green impact on the chemical plant as well as the environment.
Collapse
|
12
|
Liu XY, Li XP, Zhao RX, Zhang H. A facile sol–gel method based on urea–SnCl 2 deep eutectic solvents for the synthesis of SnO 2/SiO 2 with high oxidation desulfurization activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02526k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The n%-SnO2/SiO2 (n = 2, 4, 6) supported catalyst was prepared by the sol–gel and calcination method. Compared with the traditional impregnation method, the catalyst prepared by sol–gel method has higher oxidative desulfurization activity.
Collapse
Affiliation(s)
- Xiao-yi Liu
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Xiu-ping Li
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Rong-xiang Zhao
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Hao Zhang
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
13
|
Gurkan BE, Maginn EJ, Pentzer EB. Deep Eutectic Solvents: A New Class of Versatile Liquids. J Phys Chem B 2020; 124:11313-11315. [PMID: 33327722 DOI: 10.1021/acs.jpcb.0c10099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Burcu E Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame
| | - Emily B Pentzer
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University
| |
Collapse
|