1
|
Huang A, Xu H, Xia Z, Hao W, Wu D, He H. Study of the Energy Crossing Between Excited States Affected by the Electronegativity of Substituents for Three 4-Azido-1,8-naphthalimide Derivatives. J Phys Chem A 2024; 128:9353-9361. [PMID: 39422437 DOI: 10.1021/acs.jpca.4c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Rapid detection of H2S is crucial for human physiological health and natural ecosystems. In this study, the fluorescent sensing mechanisms of three 4-azido-1,8-naphthalimide-based fluorescent probes to monitor H2S were theoretically investigated by density functional theory and time-dependent density functional theory. The potential energy curve of the charge transfer (CT) state has a crossover with that of the locally excited (LE) state proved by the constructed linear interpolating internal coordinate pathway. Thus, the transform takes place from the LE state to the CT state causing the fluorescence quenching of the probes from a nonradiative transition process of the CT state. The distance between the Franck-Condon point and the minimal energy conical intersection becomes larger with the increase of the electronegativity of substituents on the 1,8-naphthalimide fluorophore. In addition, the degree of charge separation is closely related to the energy difference between the CT and the LE states which are also essentially affected by the electronegativity of the substituents. Since the electronegativity of the substituents has proved important for the probes, our work lays a certain theoretical foundation for the design and synthesis of more sensitive 4-azido-1,8-naphthalimide-based fluorescent probes.
Collapse
Affiliation(s)
- Anran Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Honghong Xu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Zhicheng Xia
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Wenxuan Hao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Dongxia Wu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Haixiang He
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| |
Collapse
|
2
|
Wang Y, Mu H, Sun Y, Gao J, Zhu X, Li H. Modulating the ESIPT Mechanism and Luminescence Characteristics of Two Reversible Fluorescent Probes by Solvent Polarity: A Novel Perspective. Molecules 2024; 29:1629. [PMID: 38611908 PMCID: PMC11013693 DOI: 10.3390/molecules29071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
As reversible fluorescent probes, HTP-1 and HTP-2 have favourable applications for the detection of Zn2+ and H2S. Herein, the impact of solvent on the excited-state intramolecular proton transfer (ESIPT) of HTP-1 and HTP-2 was comprehensively investigated. The obtained geometric parameters and infrared (IR) vibrational analysis associated with the intramolecular hydrogen bond (IHB) indicated that the strength of IHB for HTP-1 was weakened in the excited state. Moreover, structural torsion and almost no ICT behaviour indicated that the ESIPT process did not occur in HTP-1. Nevertheless, when the 7-nitro-1,2,3-benzoxadiazole (NBD) group replaced the H atom, the IHB strength of HTP-2 was enhanced after photoexcitation, which inhibited the twisting of tetraphenylethylene, thereby opening the ESIPT channel. Notably, hole-electron analysis and frontier molecular orbitals revealed that the charge decoupling effect was the reason for the fluorescence quenching of HTP-2. Furthermore, the potential energy curves (PECs) revealed that HTP-2 was more inclined to the ESIPT process in polar solvents than in nonpolar solvents. With a decrease in solvent polarity, it was more conducive to the ESIPT process. Our study systematically presents the ESIPT process and different detection mechanisms of the two reversible probe molecules regulated by solvent polarity, providing new insights into the design and development of novel fluorescent probes.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Li
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.W.); (H.M.); (Y.S.); (J.G.); (X.Z.)
| |
Collapse
|
3
|
Sun Y, Mu H, Wang Y, Gao J, Zhang Y, Li H, Cai J. Photophysical Properties of ( E)-1-(4-(Diethyla-mino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide Compound and Its Triple Fluorescence Emission Mechanism: A Theoretical Perspective. J Phys Chem A 2024; 128:2092-2102. [PMID: 38466934 DOI: 10.1021/acs.jpca.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In view of the application prospects in biomedicine of (E)-1-(4-(diethyla-mino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide (DAHTS), the behavior of excited-state dynamics and photophysical properties were studied using the density functional theory/time-dependent density functional theory method. A series of studies indicated that the intramolecular hydrogen-bond (IHB) intensity of DAHTS was enhanced after photoexcitation. This was conducive to promoting the excited-state intramolecular proton-transfer (ESIPT) process. Combining the analysis of the IHB and hole-electron, it revealed that the molecule underwent both the ESIPT process and the twisted charge-transfer (TICT) process. Relying on exploration of the potential energy surface, it was proposed that the different competitive mechanisms between the ESIPT and TICT processes were regulated by solvent polarity. In acetonitrile (ACN) solvent, the ESIPT process occurred first, and the TICT process occurred later. In contrast, in the CYH solvent, the molecule first underwent the TICT process and then the ESIPT process. Furthermore, we raised the possibility that the TICT behavior was the cause of weak fluorescence emission for the DAHTS in CYH and ACN solvents. By the dimer correlation analysis, the corresponding components of triple fluorescence emission were clearly assigned, corresponding to the monomer, dimer, and ESIPT isomer in turn. Our work precisely elucidated the photophysical mechanism of DAHTS and the attribution of the triple fluorescence emission components, which provided valuable guidance for the development and regulation of bioactive fluorescence probes with multiband and multicolor emission characteristics.
Collapse
Affiliation(s)
- Yuhang Sun
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongyan Mu
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yang Wang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiaan Gao
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yifu Zhang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Li
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Jixing Cai
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
4
|
Liu L, Sun B, Ding R, Mao Y. Exploring the Photophysics of a Zn 2+ Fluorescence Sensor and Its Sensing Mechanism. J Phys Chem A 2022; 126:6124-6134. [PMID: 36069475 DOI: 10.1021/acs.jpca.2c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensor X is a turn-on sensor, which is applied in the fluorescence detection of Zn2+ ions. Its photophysical process is comprehensively investigated to clarify its weak fluorescence. With the aid of density functional theory (DFT) and time-dependent density functional theory (TDDFT), the potential energy surfaces (PES) of X on both ground and first excited states are studied. Excited-state intramolecular proton transfer (EPT) processes as well as molecule twisting motion are observed, which induces several minima on the excited-state PES. Transition states as well as rate constants for these dynamic processes are obtained to evaluate their occurrences. The twisting motion of the sensor is an ultrafast process, which is initiated by a specific EPT process and leads to a nonemissive twisted intramolecular charge transfer (TICT) state. The fluorescence of the sensor is barely observable because of the easily attainable TICT state on the excited PES. This mechanism is trustworthy and intrinsically different from the previously proposed mechanism. After clarifying the photophysical process of the sensor, the Zn2+ sensing mechanism is uncovered. Also, the selectivity against Cd2+ and Hg2+ is fully discussed.
Collapse
Affiliation(s)
- Lei Liu
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingqing Sun
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ran Ding
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Yueyuan Mao
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
5
|
Zhang Y, Ma M, Shang C, Cao Y, Sun C. Theoretical Study on the Atom-Substituted Quinazoline Derivatives with Faint Emission as Potential Sunscreens. ACS OMEGA 2022; 7:14848-14855. [PMID: 35557698 PMCID: PMC9088953 DOI: 10.1021/acsomega.2c00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Two novel compounds (HQS and HQSe) with excited-state intramolecular proton transfer (ESIPT) properties were designed based on the compound 2-(2-hydroxy-3-ethoxyphenyl)-3H-quinazolin-4-one (HQ). The parameters related to the ESIPT properties and electronic spectra of HQ and its derivatives were calculated using density functional theory and time-dependent density functional theory methods. The obtained geometric configurations, infrared vibrational spectra, and reduced density gradient scatter plots have shown that the intramolecular hydrogen bond O1···H1-N1 has been weakened upon photoexcitation. Moreover, from the scanned potential energy curves, it can be found that the ESIPT processes of the three compounds have no energy barriers. It is noteworthy that HQS and HQSe can strongly absorb light in the UVA region (∼340 nm) and exhibit weak fluorescence emission in the visible light region, which comes from the keto configuration. The special optical properties of HQS and HQSe can promote their application as potential sunscreen agents.
Collapse
|
6
|
The sensing mechanism of fluorescent probe for PhSH and the process of ESIPT. Photochem Photobiol Sci 2022; 21:1055-1065. [PMID: 35267187 DOI: 10.1007/s43630-022-00193-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The detection mechanism of fluorescent probe FQ-DNP (DNP: 2,4-dinitropheno) for PhSH and the detailed ESIPT process of its product 2-(6-(diethylamino) quinolin-2-yl)-3-Hydroxy-4H-chromen-4-one (FQ-OH) have been revealed by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). For FQ-OH, the decreased bond length of H6-N7 and RDG analysis illustrate that the strength of hydrogen bond H6-N7 has been enlarged after photoexcitation, creating a good condition for ESIPT. To illustrate the ESIPT process in detail, the potential energy curves are performed and the transition state reaction energy is calculated. In the S0 state, the FQ-OH could happen proton transfer (PT) to form keto, but the keto form is more unstable than enol form. After photoexcitation, in the S1 state, FQ-OH could happen PT to produce stable keto form. Excited dynamic simulation shows that PT happens at 71.5 fs. The calculated absorption and emission spectra are in agreement with the experimental data, and the calculated Stokes shift is 160 nm. Frontier molecular orbitals (FMOs) and hole-electron analysis show that twisted intramolecular charge transfer (TICT) is responsible for the fluorescent quenching of FQ-DNP.
Collapse
|
7
|
Lou Z, Zhao J, Ji D. Theoretical insights into the excited state processes of a novel fluorescent probe for thiophenol with large Stokes shift. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
González-Rodríguez E, Guzmán-Juárez B, Miranda-Olvera M, Carreón-Castro MDP, Maldonado-Domínguez M, Arcos-Ramos R, Farfán N, Santillan R. Effect of the π-bridge on the light absorption and emission in push-pull coumarins and on their supramolecular organization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120520. [PMID: 34739896 DOI: 10.1016/j.saa.2021.120520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
A family of eight π-extended push-pull coumarins with cross-conjugated (amide) and directly conjugated (p-phenylene, alkyne, alkene) bridges were synthesized through a convergent strategy. Using an experimentally calibrated computational protocol, their UV-Visible light absorption and emission spectra in solution were investigated. Remarkably, amide-, alkyne- and alkene-bridges undergo comparable vertical excitations. The different nature of these bridges manifests during excited-state relaxation and fluorescence. We predict that these molecules can serve as building blocks for p-type semiconductors with low reorganization energies, below 0.2 eV. Since solid-state self-assembly is crucial for this application, we examined the effect of the π-bridge over the supramolecular organization in this family of compounds to determine if stacking prevails in these π-extended coumarin derivatives. Amide and alkyne spacers allow coplanar conformations which crystallize readily; p-phenylene hinders planarity yet allows facile crystallization; alkene-bridged molecules eluded all crystallization attempts. All the crystals obtained feature dense face-to-face π-stacking with 3.5-3.7 Å interlayer distances, expected to facilitate charge transfer processes in the solid state.
Collapse
Affiliation(s)
- Edgar González-Rodríguez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México Apdo. Postal 14-740, 0700, México
| | - Brenda Guzmán-Juárez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México Apdo. Postal 14-740, 0700, México
| | - Montserrat Miranda-Olvera
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - María Del Pilar Carreón-Castro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Mauricio Maldonado-Domínguez
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| | - Rafael Arcos-Ramos
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México Apdo. Postal 14-740, 0700, México.
| |
Collapse
|
9
|
Lv M, Han C, Ji L, Zhang Z, Hua H, He Y, Li W. Theoretical Perspective on the Sensing Mechanism of a Novel Fluorescent Probe for Nitramine Explosives: The Role of Radical Reactions. J Phys Chem A 2022; 126:685-690. [PMID: 35104131 DOI: 10.1021/acs.jpca.1c08838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapid detection of hidden nitramine explosives in public areas is a pressing concern for public safety. Deep insight into the sensing mechanism is significant and inspiring to the design of new high-efficiency nitramine probes. This study has theoretically investigated the recognition and fluorescence mechanism of a newly reported high-efficiency nitramine probe, proposing a new reaction pattern and sensing product for the probe with the photodegraded radical nitro dioxide (NO2) of nitramines. The rationality of the new detection product is confirmed by the fluorescence properties, IR analysis, and energy profiles. The recognition mechanism is found to be an H-abstraction reaction via NO2 and the turn-off fluorescence mechanism is suggested as a photoinduced electron transfer (PET) process based on the results of the frontier molecular orbital (FMO) analysis. The high selectivity of the probe toward NO2 is illustrated based on the energy analysis of the sensing products.
Collapse
Affiliation(s)
- Meiheng Lv
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cong Han
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Lincheng Ji
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Zhichao Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Hongzhen Hua
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Yongke He
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Wenze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| |
Collapse
|
10
|
Theoretical exploration in the substituent effect on photophysical properties and excited-state intramolecular proton transfer process of benzo[a]imidazo[5,1,2-cd]indolizines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
New insight into the fluorescence mechanism in a fluorescent probe for detecting Zn2+ and CN− through theoretical calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Yu Y, Huang X, Yin H, Feng Y, Xuan H, He H. Excited state intramolecular proton transfer mechanism of a benzothiazole derivative fluorescent probe: Spontaneous ESIPT process. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhao J, Jin B. Solvent polarity dependent excited state hydrogen bond effects and intramolecular double proton transfer mechanism for 2-hydroxyphenyl-substituted benzo[1,2-d:4,5-d']bisimidazole system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119394. [PMID: 33422870 DOI: 10.1016/j.saa.2020.119394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In this work, we probe into the photo-induced excited state hydrogen bonding interactions and excited state proton transfer (ESPT) behaviors for a representative benzo[1,2-d:4,5-d']bisimidazole derivative (i.e., 2-hydroxyphenyl-substituted benzo[1,2-d:4,5-d']bisimidazole (HPBB)) compound. In view of aprotic solvents with different polarities, cyclohexane (CYH), dichloromethane (DCM) and acetonitrile (MeCN) solvents are considered. Analyzing hydrogen-bond geometrical parameters, infrared (IR) vibrational spectra, Mayer bond order and predicting hydrogen bonding energy (E(HB)), we verify dual hydrogen bonds of HPBB are strengthened in S1 state. Particularly, in nonpolar solvent, the enhanced excited state hydrogen bonds become more obvious. The intriguing charge redistribution and frontier molecular orbitals (MOs) reveal hydrogen bonding acceptance ability of acceptor moieties becomes stronger, which plays a crucial role in capturing hydroxyl proton via photoexcitation. To check and explore ESIPT mechanism, we present the solvent polarity dependent asynchronous excited state intramolecular double proton transfer (ESIDPT) mechanism. That is, nonpolar solvent promotes excited state intramolecular single proton transfer (ESISPT) process for HPBB, while polar solvent contributes to ESIDPT behavior with the primary single proton-transfer product in S1 state. This work not only makes a rational attribution to experimental phenomena, but also clarifies detailed excited state behaviors for HPBB and presents regulating ESIPT mechanism via solvent polarity.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, PR China
| | - Bing Jin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, PR China.
| |
Collapse
|
14
|
Lou Z, Zhou P. Reply to “Comment on ‘Theoretical Insights into the Excited State Decays of a Donor–Acceptor Dyad: Is the Twisted and Rehybridized Intramolecular Charge-Transfer State Involved?’”. J Phys Chem B 2020; 124:10582-10584. [DOI: 10.1021/acs.jpcb.0c07252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhangrong Lou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, P. R. China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, P. R. China
| |
Collapse
|
15
|
Dereka B, Rosspeintner A, Svechkarev D, Vauthey E. Comment on "Theoretical Insights into the Excited State Decays of a Donor-Acceptor Dyad: Is the Twisted and Rehybridized Intramolecular Charge-Transfer State Involved?". J Phys Chem B 2020; 124:10578-10581. [PMID: 33169608 DOI: 10.1021/acs.jpcb.0c06526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bogdan Dereka
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
16
|
Tang Z, Bai T, Zhou P. Sensing Mechanism of a Fluorescent Probe for Cysteine: Photoinduced Electron Transfer and Invalidity of Excited-State Intramolecular Proton Transfer. J Phys Chem A 2020; 124:6920-6927. [DOI: 10.1021/acs.jpca.0c06171] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P.R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Tianxin Bai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P.R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P.R. China
| |
Collapse
|