1
|
Meng Q, Li Z, Pang J, Yang K, Zhou J. Biomimetic Directional Liquid Transport on a Planar Surface in a Passive and Energy-Free Way. Biomimetics (Basel) 2025; 10:223. [PMID: 40277622 PMCID: PMC12025260 DOI: 10.3390/biomimetics10040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
The development of efficient directional liquid transport systems has become a central focus in numerous research and engineering fields. Natural organisms have evolved intricate structures that facilitate the controlled movement of liquids on planar surfaces. These natural mechanisms offer insights into creating sustainable, energy-efficient technologies that mimic these natural adaptations. The purpose of biomimetic directional liquid transport is to harness the principles found in nature to design systems that can autonomously manage the flow of liquids. One of the core objectives is to achieve efficient liquid directional movement without the need for external energy sources or mechanical pumps. In this article, we review the typical models of natural systems with directional liquid transport on planar surfaces. Next, we reveal the physical mechanism by which surface chemical gradients, wettability gradients, and geometric gradients synergically drive liquid directional motion. Then, we introduce the breakthroughs of bionic surface engineering strategies in water harvesting, directional liquid transport and recent advancements in engineering applications. Finally, we give a conclusion and future perspectives on the development of directional liquid transport.
Collapse
Affiliation(s)
- Qing’an Meng
- College of Aviation Engineering, Civil Aviation Flight University of China, Chengdu 641419, China; (Z.L.); (K.Y.); (J.Z.)
| | | | - Jie Pang
- College of Aviation Engineering, Civil Aviation Flight University of China, Chengdu 641419, China; (Z.L.); (K.Y.); (J.Z.)
| | | | | |
Collapse
|
2
|
Zhang W, Wang X, Guo Z. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges. MATERIALS HORIZONS 2025. [PMID: 39992357 DOI: 10.1039/d4mh01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (e.g., heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.
Collapse
Affiliation(s)
- Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaobo Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
3
|
Jia H, Li X, Chen K, Yang F, Ren H, Li H, Li C. Enhancing Directional Droplet Transport via Surface Charge Gradient: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39258984 DOI: 10.1021/acs.langmuir.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The phenomenon of spontaneous droplet transport has a wide range of implications in water collection, microfluidic manipulation, oil-water separation, and various other fields. Achieving efficient and controllable spontaneous droplet transport is therefore of paramount importance. This study investigates the potential of surface charge manipulation to enhance spontaneous droplet transport through comprehensive molecular dynamics simulations. Our findings reveal that the surface charge of the substrate significantly influences its wettability, reducing the contact angle of the droplet and increasing both the contact area and interaction energy. Moreover, we introduce a novel approach to enhance droplet mobility by creating a surface charge gradient on the substrate. By introducing bands with varying charges along a specific direction of the substrate, the droplet experiences a force directed toward regions of increasing charge, thereby facilitating its movement. Importantly, the driving mechanism of droplet motion is well explained by combining classical electrowetting theory with the analysis of the droplet's advancing and receding contact angles, which demonstrates that a more pronounced surface charge gradient generates greater force and enhances droplet mobility. These findings offer valuable insights into the design of microfluidic systems and related applications based on electrowetting.
Collapse
Affiliation(s)
- Huiru Jia
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuhao Li
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kang Chen
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fan Yang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hongru Ren
- School of Science, Chang'an University, Xi'an 710064, China
| | - Huan Li
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
- Innovation Center, NPU Chongqing, Chongqing 401135, China
| | - Chun Li
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Wang B, Chen D, Yang X, Li M. Investigation and Analysis of Wettability, Anisotropy, and Adhesion in Bionic Upper and Lower Surfaces Inspired by Indocalamus Leaves. Molecules 2024; 29:3449. [PMID: 39124855 PMCID: PMC11313824 DOI: 10.3390/molecules29153449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Nature provides us with a wealth of inspiration for the design of bionic functional surfaces. Numerous types of plant leaves with exceptional wettability, anisotropy, and adhesion are extensively employed in many engineering applications. Inspired by the wettability, anisotropy, and adhesion of indocalamus leaves, bionic upper and lower surfaces (BUSs and BLSs) of the indocalamus leaf were successfully prepared using a facile approach combining laser scanning and chemical modification. The results demonstrated the BUSs and BLSs obtained similar structural features to the upper and lower surfaces of the indocalamus leaf and exhibited enhanced and more-controllable wettability, anisotropy, and adhesion. More importantly, we conducted a detailed comparative analysis of the wettability, anisotropy, and adhesion between BUSs and BLSs. Finally, BUSs and BLSs were also explored for the corresponding potential applications, including self-cleaning, liquid manipulation, and fog collection, thereby broadening their practical utility. We believe that this study can contribute to the enrichment of the research on novel biological models and provide significant insights into the development of multifunctional bionic surfaces.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (B.W.); (X.Y.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Donghui Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (B.W.); (X.Y.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Xiao Yang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (B.W.); (X.Y.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Ming Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China;
| |
Collapse
|
5
|
Wang L, Wang H, Di Y, Dong L, Jin G. Predicting Sliding Angles on Random Pit-Distributed Textures Using Probabilistic Neural Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6406-6412. [PMID: 37095072 DOI: 10.1021/acs.langmuir.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The three-phase contact line best reflects the sliding ability of droplets on solid surfaces. Most studies on the sliding angle (SA) of superhydrophobic surfaces are limited to regularly arranged microtextured surfaces, lacking definite models and effective methods for a complex surface of a random texture. In this study, random pits with an area ratio of 19% were generated on 1 mm × 1 mm subregions, and the subregions formed arrays on a sample surface of 10 mm × 10 mm to obtain a randomly distributed microtexture surface with no pit overlaps. Although the contact angle (CA) of randomly pitted texture was the same, the SA was different. The SA of surfaces was affected by the pit location. The location of random pits increased the complexity of the three-phase contact line movement. The continuity of the three-phase contact angle (T) can reveal the rolling mechanism of the random pit texture and predict the SA, but the relationship between the T and SA is a relatively poor linear relation (R2 = 74%), and the SA of the random pit texture can only be roughly estimated. The quantized pit coordinates and SA were used as the input and output labels for the PNN model, respectively, and the accuracy of the model convergence was 90.2%.
Collapse
Affiliation(s)
- Li Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150090, Heilongjiang, China
- Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Army Armored Forces Academy, Beijing 100072, China
| | - Haidou Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150090, Heilongjiang, China
- National Engineering Research Center for Remanufacturing, Army Armored Forces Academy, Beijing 100072, China
| | - Yuelan Di
- Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Army Armored Forces Academy, Beijing 100072, China
| | - Lihong Dong
- Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Army Armored Forces Academy, Beijing 100072, China
| | - Guo Jin
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150090, Heilongjiang, China
| |
Collapse
|
6
|
Zhou P, Yan Y, Cheng J, Zhou C. Directional Self-Transportation of Droplets on Superwetting Wedge-Shaped Surface in Air and Underliquid Environments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8742-8750. [PMID: 36740783 DOI: 10.1021/acsami.2c21392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The directional self-transportation of droplets has aroused great attention in microfluidic systems. However, most reported surfaces are mainly designed for driving water droplets to move in air, displaying low adaptability in complex environments. This work presents a wedge-shaped surface with multiple superwettability, i.e., superhydrophilicity/superoleophilicity and underwater superoleophobicity/underoil superhydrophobicity, fabricated by electrodeposition of a metal-organic framework on a copper sheet. This surface exhibited excellent performance for driving droplet self-transportation, regardless of the droplet type (water or oil) and environmental media (air or underliquids). In air, the wedge-shaped surface with wedge angle of 9.2° could move droplets of water and dodecane up to 24.5 mm and 17.9 mm, respectively. The movement of water droplet under dodecane, however, dropped from 24.5 mm to 22.1 mm, while the dodecane droplet underwater increased from 17.9 mm to 20.3 mm in moving displacement, indicating the underliquid environment is in favor of manipulation of oil droplets. Furthermore, the droplet convergence, transportation, and separation were achieved on the well-designed multiple wedge tracks in air with a total movement distance up to 60.0 mm. The test of micro-oil droplets collecting under water demonstrated that a sponge with two wedges has 2.1 times the oil droplet collection capacity over that of the sponge only, providing a new strategy for efficient treatment of the micro-oil droplets contaminated water.
Collapse
Affiliation(s)
- Peizhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Yuanyang Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
7
|
Controllable droplet self-transport on multi-bioinspired slippery liquid-infused microstructure surface. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Wang F, Guo F, Wang Z, He H, Sun Y, Liang W, Yang B. Surface Charge Density Gradient Printing To Drive Droplet Transport: A Numerical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13697-13706. [PMID: 36317786 DOI: 10.1021/acs.langmuir.2c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional strategies, such as morphological or chemical gradients, struggle to realize the high-velocity and long-distance transport for droplets on a solid surface because of the pinning hydrodynamic equilibrium. Thus, there is a continuing challenge for practical technology to drive droplet transport over the last decades. The surface charge density (SCD) gradient printing method overcame the theoretical limit of traditional strategies and tackled this challenge [Nat. Mater. 2019, 18: 936], which utilized the asymmetric electric force to realize the high-velocity and long-distance droplet transport along a preprinted SCD gradient pathway. In the present work, by coupling the electrostatics and the hydrodynamics, we developed an unexplored numerical model for the water droplet transporting along the charged superhydrophobic surface. Subsequently, the effects of SCD gradients on the droplet transport were systematically discussed, and an optimized method for SCD gradient printing was proposed according to the numerical results. The present approach can provide early guidance for the SCD gradient printing to drive droplet transport on a solid surface.
Collapse
Affiliation(s)
- Fangxin Wang
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Fuzheng Guo
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
| | - Zhenqing Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Hailing He
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P.R. China
| | - Yun Sun
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
| | - Wenyan Liang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Bin Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai200092, P.R. China
| |
Collapse
|
9
|
Tang Q, Liu X, Cui X, Su Z, Zheng H, Tang J, Joo SW. Contactless Discharge-Driven Droplet Motion on a Nonslippery Polymer Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14697-14702. [PMID: 34894688 DOI: 10.1021/acs.langmuir.1c02462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Droplet manipulation is the cornerstone of many modern technologies. It is still challenging to drive the droplet motion on nonslippery surfaces flexibly. We present a droplet manipulation method on nonslippery polymer surfaces based on the corona discharge. With the corona discharge of two-needle electrodes with opposite polarities, the droplet's charge polarity can be switched, which results in the directionally droplet transport on a charged polymer surface with the oscillation. Here, such droplet behaviors are presented in detail. Dependence of the motion on the critical distance and driving distance between the droplet and the needle electrode is revealed. The driving mechanism is verified by experiments and simulations. This work enriches the droplet manipulation techniques on nonslippery surfaces for various applications, such as combinatory chemistry, biochemical, and medical detection.
Collapse
Affiliation(s)
- Qiang Tang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaofeng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaxia Cui
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenpeng Su
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jau Tang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
10
|
Feldmann D, Pinchasik BE. How Droplets Move on Surfaces with Directional Chemical Heterogeneities. J Phys Chem Lett 2021; 12:11703-11709. [PMID: 34846895 DOI: 10.1021/acs.jpclett.1c03423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nature of adhesion of droplets to surfaces is a long pending scientific question. With the evolution of complex surfaces, quantification and prediction of these adhesion forces become intricate. Nevertheless, understanding these forces is highly relevant for explaining liquid transport in nature and establishing design guidelines for manmade interfaces. Here, it is shown that adhesion of droplets is highly sensitive to the direction of chemical heterogeneities, both in the static and dynamic regimes. This dependency is quantified by bending beam and droplet roll-off experiments. The shape of the fluid contact line on the microscale elucidates the origin of the direction-dependent adhesion. Namely, the droplet receding part pins to a higher number of patches when moving toward to the apex in comparison to the opposite direction. These findings improve the understanding of droplet adhesion to surfaces with chemical heterogeneities and directional transport phenomena.
Collapse
Affiliation(s)
- David Feldmann
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| |
Collapse
|
11
|
Qiu J, Chen S, Di Y, Wang H, Lan L, Wang L. Prediction of Droplet Sliding on the Continuity of the Three-Phase Contact Line. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13038-13045. [PMID: 34702036 DOI: 10.1021/acs.langmuir.1c02102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many animals and plants have evolved wonderful hydrophobic abilities to adapt to the complex climate environment. The microstructure design of a superhydrophobic surface focuses on bionics and will be restricted by processing technology. Although certain functions can be achieved, there is a lack of unified conclusion on the wetting mechanism and a few quantitative analyses of the continuity of the three-phase contact line. Therefore, the relationship between the surface microstructure of the lattice pattern and the critical sliding angle of the water droplet in the Cassie state was investigated in this paper, and we proposed a method to quantitatively analyze the continuity of the three-phase contact line by a dimensionless length f. The results showed that the three-phase contact line was an important factor to determine the sliding performance of the droplet. The upward traction force generated by the surface tension through the force analysis on the three-phase contact line can enhance the sliding ability of the droplet on the solid surface. There was a good negative linear correlation between the critical sliding angle and dimensionless length, which provided a guiding basis for the optimal design of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Junhong Qiu
- College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shuang Chen
- College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yuelan Di
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
| | - Haidou Wang
- National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
| | - Ling Lan
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
| | - Li Wang
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
| |
Collapse
|
12
|
An Q, Wang J, Zhao F, Li P, Wang L. Unidirectional water transport on a two-dimensional hydrophilic channel with anisotropic superhydrophobic barriers. SOFT MATTER 2021; 17:8153-8159. [PMID: 34525158 DOI: 10.1039/d1sm00697e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many creatures have a unique anisotropic structure and special wettability on their skins, presenting intriguing water transporting properties. Inspired by the biosphere, a two-dimensional titanium dioxide-based hydrophilic channel possessing anisotropic superhydrophobic barriers was synthesized. This channel demonstrates unidirectional water transporting properties. When water is injected into the channel, fluid tends to spread in a specific direction. An asymmetric spreading resistance is generated by the different interaction modes between the liquid and superhydrophobic barriers. The superhydrophobic barriers are designed as two main styles: line and curve. As for line barriers, the included angle between barrier and horizontal is the key parameter for the unidirectional water transporting ability whereas, for curve barriers, the radius is an important variable. The best design scheme for unidirectional water transporting properties could be found by varying the parameters of these two types of barriers in the channel. Overall, this study is expected to have a significant implication in the water transporting field.
Collapse
Affiliation(s)
- Qier An
- School of Aviation, Inner Mongolia University of Technology, 49 Aimin Street, Xincheng District, Hohhot, Inner Mongolia 010051, Inner Mongolia, P. R. China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, School of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China.
| | - Feng Zhao
- Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Peiliu Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
13
|
Tang X, Huang J, Guo Z, Liu W. A combined structural and wettability gradient surface for directional droplet transport and efficient fog collection. J Colloid Interface Sci 2021; 604:526-536. [PMID: 34280753 DOI: 10.1016/j.jcis.2021.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS The droplet manipulation behavior is affected by chemical structural driving force (including the superposition of electric, magnetic, optical and thermal fields), which directly determine transportation velocity. A lot of research has focused on a single driving force that induces the directional transportation behavior, which affects its performance. EXPERIMENTS A simple method for preparing wettability gradient conical copper needles (WGCCN) combining structural gradient and chemical gradient was formulated. The effect of droplet volume and tilt angles on droplet transport velocity was systematically studied. The process of droplet transport was revealed through theoretical model and mechanical analysis. Finally, the application of WGCCN and its array model in fog collection were explored. FINDINGS A continuous chemical gradient in the conical structure gradient induces the droplet directional transportation, and the transportation velocity depends on the droplet volume. In addition, under the cooperation effect of multiple driving force, the droplet can still be transported in a directional orientation even if it is tilted at a certain angle. The simple droplet manipulation behavior portends that the droplets directional transport behavior can be applied in microfluidic manipulation by cooperation of effective multiple driving force with satisfactory results.
Collapse
Affiliation(s)
- Xing Tang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
14
|
Li Y, Huang J, Cheng J, Xu S, Pi P, Wen X. Enhanced Movement of Two-Component Droplets on a Wedge-Shaped Ag/Cu Surface by a Wettability Gradient. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15857-15865. [PMID: 33765767 DOI: 10.1021/acsami.1c00517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The wedge-shaped Ag/Cu surface with a contact angle (CA) [droplet of 30 vol % propylene glycol (PG)] of 18.6° in the wedge track and 64.6° at its periphery was fabricated through a facile gradient displacement reaction on the Cu substrate. The aqueous droplet of 30% PG could realize directed motion on the wedge track without back-end pinning, moving in a two-stage process of front-end spreading and subsequent back-end shrinking. A wettability gradient from 64.6 to 18.6° on the wedge surface could enhance the droplet motion, especially during the second stage. A favorable length of the wettability gradient (15 mm) was obtained, capable of moving the droplet the farthest displacement of 21.6 mm at a velocity of 0.53 mm/s on a wedge track with the wedge angle of α = 10° and length of 25 mm. The driving force arising from the wettability gradient during the second stage was evaluated theoretically to elucidate the effect of the length of the wettability gradient on the movement. Finally, three T-shaped self-driven surface micromixers composed of a mixing zone with uniform wettability and a transportation zone with different gradients were designed to test the drainage ability of droplets away from the surface. The wedge track combined with the wettability gradient was found to be capable of removing the mixed droplet completely out of the mixing region and flowing away, while the droplet would attach or stay in the mixing zone if actuated by the shape gradient or the wettability gradient alone.
Collapse
Affiliation(s)
- Yiliang Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jinmei Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Shouping Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|