1
|
Shi L, LaCour RA, Qian N, Heindel JP, Lang X, Zhao R, Head-Gordon T, Min W. Water structure and electric fields at the interface of oil droplets. Nature 2025; 640:87-93. [PMID: 40108466 DOI: 10.1038/s41586-025-08702-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
Interfacial water exhibits rich and complex behaviour1, playing an important part in chemistry, biology, geology and engineering. However, there is still much debate on the fundamental properties of water at hydrophobic interfaces, such as orientational ordering, the concentration of hydronium and hydroxide, improper hydrogen bonds and the presence of large electric fields2-5. This controversy arises from the challenges in measuring interfacial systems, even with the most advanced experimental techniques and theoretical approaches available. Here we report on an in-solution, interface-selective Raman spectroscopy method using multivariate curve resolution6,7 to probe hexadecane-in-water emulsions, aided by a monomer-field theoretical model for Raman spectroscopy8. Our results indicate that oil-water emulsion interfaces can exhibit reduced tetrahedral order and weaker hydrogen bonding, along with a substantial population of free hydroxyl groups that experience about 95 cm-1 redshift in their stretching mode compared with planar oil-water interfaces. Given the known electrostatic zeta potential characteristic of oil droplets9, we propose the existence of a strong electric field (about 50-90 MV cm-1) emanating from the oil phase. This field is inferred indirectly but supported by control experiments and theoretical estimates. These observations are either absent or opposite in the molecular hydrophobic interface formed by small solutes or at planar oil-water interfaces. Instead, water structural disorder and enhanced electric fields emerge as unique features of the mesoscale interface in oil-water emulsions, potentially contributing to the accelerated chemical reactivity observed at hydrophobic-water interfaces10-13.
Collapse
Affiliation(s)
- Lixue Shi
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - R Allen LaCour
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Joseph P Heindel
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Ruoqi Zhao
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Tuncay Tanriverdi S, Gokce EH, Ozturk NZA, Turk M, Entezari B, Balci A, Erdogan U, Ozcanlar E, Isik E, Ozkırım Arslan B, Aldeniz EE, Dude UK, Ozer O. Formulation, characterization, and in vitro release of topical nanoemulsion containing prednisolone-derived corticosteroid. Drug Dev Ind Pharm 2025; 51:180-192. [PMID: 39840931 DOI: 10.1080/03639045.2025.2455437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Prednisolone-derived corticosteroid (PDC) has anti-inflammatory activity in ocular administration. However, drug administration to the eye is extremely difficult due to the complex structure of the eye. Because of the ability of the eye to retain the drug and its physiology, the bioavailability of drugs applied to the eye is very low. OBJECTIVE One of the methods to overcome bioavailability problem is to formulate the drug as a nanoemulsion (NE). NEs are thermodynamically stable, colloidal drug delivery systems. They have small globule size and high surface area. These properties give them the ability to cross the biological membrane and increase the therapeutic efficacy of the drug molecule. METHODOLOGY The high energy method was used to create an NE eye drop formulation containing PDC, and the effects of changing homogenization processes on NE formation were investigated. After deciding on the optimum formulation; characterization, assay, and in vitro release studies were performed, and the stability of the formulation was followed for 12 months. RESULTS The optimum formulation selected initially had 126.6 ± 40.12 nm and 99.9 ± 1.2% PDC, it had 125.4 ± 41.20 nm and 99.29 ± 1.3% PDC after 12 months in 25 °C 40% RH conditions. Cytotoxicity studies have shown no significant cytotoxic effects in NE-containing PDC. CONCLUSION The preparation and optimization of topical NE formulations containing PDC for ocular inflammation treatment were achieved. The developed formulation was stable for 12 months and no toxic effect was found in cell culture studies. This formulation could be useful as an alternative to PDC for ocular applications.
Collapse
Affiliation(s)
| | - Evren Homan Gokce
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | | | - Merve Turk
- Abdi Ibrahim Pharmaceuticals, R&D Center, Istanbul, Turkey
| | - Bita Entezari
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Alper Balci
- Abdi Ibrahim Pharmaceuticals, R&D Center, Istanbul, Turkey
| | | | - Emre Ozcanlar
- Abdi Ibrahim Pharmaceuticals, R&D Center, Istanbul, Turkey
| | - Enis Isik
- Abdi Ibrahim Pharmaceuticals, R&D Center, Istanbul, Turkey
| | | | | | | | - Ozgen Ozer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Verbeke R, Linden GM, Dreier P, Kampf C, Frey H. Polymerization of Epoxides at a Static Oil-Alkaline Water Interface. Macromol Rapid Commun 2024; 45:e2400423. [PMID: 39141847 DOI: 10.1002/marc.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Indexed: 08/16/2024]
Abstract
'On-water' catalysis entails the significant enhancement of a chemical reaction by water, even when those reactions are known to be water-sensitive. Here, the findings about the anionic ring opening polymerization of epoxides at the static interface between oil and alkaline water are shared. Unexpectedly, high molar mass fractions are observed with the interfacial system presented herein, albeit at very low conversions (< 5%). Styrene oxide, a notably unreactive epoxide, is chosen as the model compound to investigate the influence of several reaction parameters (i.e., pH, type of the initiator salt, polymerization time, interfacial area, solvent, shaking) on the polymerization. Poly(styrene oxide) (PSO) with an Mn of 5300 g mol-1 is observed via MALDI-ToF MS, with species of at least 8000 g mol-1. The feasibility of expanding the system to (cyclic) aliphatic and aromatic epoxides, and glycidyl ethers is also explored. The system appears to promote polymerization of epoxides that position at the interface, in such a way that initiation and propagation can occur. A mechanistic interpretation of the interfacial polymerization is suggested. The surprising results obtained in this work urge to revisit the role of water in ionic polymerizations.
Collapse
Affiliation(s)
- Rhea Verbeke
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Membrane Technology Group, Centre for Membrane Separations, Adsorption Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Gregor M Linden
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Philip Dreier
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher Kampf
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
4
|
Glikman D, Wyszynski L, Lindfeld V, Hochstädt S, Hansen MR, Neugebauer J, Schönhoff M, Braunschweig B. Charge Regulation at the Nanoscale as Evidenced from Light-Responsive Nanoemulsions. J Am Chem Soc 2024; 146:8362-8371. [PMID: 38483326 DOI: 10.1021/jacs.3c14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Emulsions are indispensable in everyday life, and the demand for emulsions' diversity and control of properties is therefore substantial. As emulsions possess a high internal surface area, an understanding of the oil/water (o/w) interfaces at the molecular level is fundamental but often impaired by experimental limitations to probe emulsion interfaces in situ. Here, we have used light-responsive surfactants (butyl-AAP) that can photoisomerize between E and Z isomers by visible and UV light irradiation to tune the emulsion interfaces. This causes massive changes in the interface tension at the extended o/w interfaces in macroemulsions and a drastic shift in the surfactants' critical micelle concentration, which we show can be used to control both the stability and phase separation. Strikingly different from macroemulsions are nanoemulsions (RH ∼90 nm) as these are not susceptible to E/Z photoisomerization of the surfactants in terms of changes in their droplet size or ζ-potential. However, in situ second-harmonic scattering and pulsed-field gradient nuclear magnetic resonance (NMR) experiments show dramatic and reversible changes in the surface excess of surfactants at the nanoscopic interfaces. The apparent differences in ζ-potentials and surface excess provide evidence for a fixed charge to particle size ratio and the need for counterion condensation to renormalize the particle charge to a critical charge, which is markedly different compared to the behavior of very large particles in macroemulsions. Thus, our findings may have broader implications as the electrostatic stabilization of nanoparticles requires much lower surfactant concentrations, allowing for a more sustainable use of surfactants.
Collapse
Affiliation(s)
- Dana Glikman
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Leonard Wyszynski
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Valentin Lindfeld
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Sebastian Hochstädt
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Johannes Neugebauer
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
5
|
Becker M, Loche P, Rezaei M, Wolde-Kidan A, Uematsu Y, Netz RR, Bonthuis DJ. Multiscale Modeling of Aqueous Electric Double Layers. Chem Rev 2024; 124:1-26. [PMID: 38118062 PMCID: PMC10785765 DOI: 10.1021/acs.chemrev.3c00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
From the stability of colloidal suspensions to the charging of electrodes, electric double layers play a pivotal role in aqueous systems. The interactions between interfaces, water molecules, ions and other solutes making up the electrical double layer span length scales from Ångströms to micrometers and are notoriously complex. Therefore, explaining experimental observations in terms of the double layer's molecular structure has been a long-standing challenge in physical chemistry, yet recent advances in simulations techniques and computational power have led to tremendous progress. In particular, the past decades have seen the development of a multiscale theoretical framework based on the combination of quantum density functional theory, force-field based simulations and continuum theory. In this Review, we discuss these theoretical developments and make quantitative comparisons to experimental results from, among other techniques, sum-frequency generation, atomic-force microscopy, and electrokinetics. Starting from the vapor/water interface, we treat a range of qualitatively different types of surfaces, varying from soft to solid, from hydrophilic to hydrophobic, and from charged to uncharged.
Collapse
Affiliation(s)
| | - Philip Loche
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Majid Rezaei
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Institute
of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | | | - Yuki Uematsu
- Department
of Physics and Information Technology, Kyushu
Institute of Technology, 820-8502 Iizuka, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Douwe Jan Bonthuis
- Institute
of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
6
|
Leister N, Götz V, Jan Bachmann S, Nachtigall S, Hosseinpour S, Peukert W, Karbstein H. A comprehensive methodology to study double emulsion stability. J Colloid Interface Sci 2023; 630:534-548. [DOI: 10.1016/j.jcis.2022.10.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
7
|
Choose your own adventure: Picosecond or broadband vibrational sum-frequency generation spectroscopy. Biointerphases 2022; 17:031201. [PMID: 35513338 DOI: 10.1116/6.0001844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vibrational sum-frequency generation (VSFG) spectroscopy is a method capable of measuring chemical structure and dynamics within the interfacial region between two bulk phases. At the core of every experimental system is a laser source that influences the experimental capabilities of the VSFG spectrometer. In this article, we discuss the differences between VSFG spectrometers built with picosecond and broadband laser sources as it will impact everything from material costs, experimental build time, experimental capabilities, and more. A focus is placed on the accessibility of the two different SFG systems to newcomers in the SFG field and provides a resource for laboratories considering incorporating VSFG spectroscopy into their research programs. This Tutorial provides a model decision tree to aid newcomers when determining whether the picosecond or femtosecond laser system is sufficient for their research program and navigates through it for a few specific scenarios.
Collapse
|
8
|
Uematsu Y, Ohshima H. Electrophoretic Mobility of a Water-in-Oil Droplet Separately Affected by the Net Charge and Surface Charge Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4213-4221. [PMID: 35352953 DOI: 10.1021/acs.langmuir.1c03145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water-in-oil emulsions and droplets exhibit physicochemical properties completely different from those of oil-in-water emulsions and droplets. Thus, directly applying a standard theoretical model to water-in-oil systems cannot describe these anomalous properties. Here, the electrophoretic mobility of a water-in-oil droplet is analytically investigated using Debye-Hückel linearization and neglecting the Marangoni effect. The resulting electrophoretic mobility is shown to be separately dependent on the net charge of the droplet and the surface charge density at the droplet interface. Furthermore, when the net charge is negligible, the electrophoretic mobility is proportional to the surface charge density with a negative coefficient. This indicates that the internal electric double layer inversely contributes to the electrophoresis. This theory is applied to experimental data of water-in-oil emulsions and droplets in the literature, and qualitative and quantitative verification of the theory is discussed.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| |
Collapse
|
9
|
Glikman D, Braunschweig B. Nanoscale Effects on the Surfactant Adsorption and Interface Charging in Hexadecane/Water Emulsions. ACS NANO 2021; 15:20136-20147. [PMID: 34898170 DOI: 10.1021/acsnano.1c08038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale properties at interfaces play a key role in the colloidal stability of emulsions and other soft matter materials where physical properties need to be controlled from the nano to macroscopically visible length scales. Our molecular level understanding of oil-water interfaces arises mostly from results at extended interfaces and the common view that emulsions are stabilized by a large number of surfactant molecules at the droplet's interface which, however, has been recently challenged. In this work, we show that the particle size and the curvature of oil droplets at the nanoscale is of great importance for the interface adsorption of dodecyl sulfate surfactants and possible counterion condensation at the charged hexadecane-water interface. Using second-harmonic scattering, we have studied the surface charge of oil droplets in nanoemulsions where we systematically varied the particle size R between 80 and 270 nm and demonstrate that the surface charge density σ changes drastically with size: For sizes >200 nm, σ is similar to what can be expected at flat extended interfaces, while σ is dramatically reduced by almost an order of magnitude when the particle size of the oil droplet is 80 nm. Using a theoretical approach that considers counterion condensation, we quantify the nanoscale effects on the change in surface charge with particle size and find excellent agreement with our experimental result. Modeling of the experimental results also implies that the charge per particle remains constant and depends on a critical balance of surfactant adsorption and ion condensation.
Collapse
Affiliation(s)
- Dana Glikman
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
10
|
Hosseinpour S, Götz V, Peukert W. Einfluss von Tensiden auf die molekulare Struktur der Öl/Wasser‐Grenzfläche. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Saman Hosseinpour
- Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) Interdisziplinäres Zentrum für Funktionale Partikelsysteme (FPS) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstraße 4 91058 Erlangen Deutschland
| | - Vanessa Götz
- Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) Interdisziplinäres Zentrum für Funktionale Partikelsysteme (FPS) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstraße 4 91058 Erlangen Deutschland
| | - Wolfgang Peukert
- Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) Interdisziplinäres Zentrum für Funktionale Partikelsysteme (FPS) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstraße 4 91058 Erlangen Deutschland
| |
Collapse
|
11
|
Hosseinpour S, Götz V, Peukert W. Effect of Surfactants on the Molecular Structure of the Buried Oil/Water Interface. Angew Chem Int Ed Engl 2021; 60:25143-25150. [PMID: 34478223 PMCID: PMC9293143 DOI: 10.1002/anie.202110091] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 12/30/2022]
Abstract
The oil/water interface, for instance in emulsions, is often stabilized by surfactants. Hence, the co-existence of oil, water, and surfactant molecules at the buried oil/water interface determines macroscopic properties such as surface tension or emulsion stability. Utilizing an inherently surface sensitive spectroscopic method, sum frequency generation (SFG) spectroscopy, we show that adsorption of an anionic surfactant to the buried oil/water interface increases the magnitude of the interfacial electric field. Meanwhile, the degree of ordering of the interfacial oil molecules increases with the surfactant concentration owing to the intercalation of aliphatic chains of interfacial oil and surfactant molecules. At sufficiently high surfactant concentrations, the interfacial charge reaches a maximum value and the interfacial oil molecules arrange in a fully ordered conformation, a state which coincides with the significant decrease in interfacial tension and increased emulsion stability.
Collapse
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG)Interdisciplinary Center for Functional Particle Systems (FPS)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Cauerstrasse 491058ErlangenGermany
| | - Vanessa Götz
- Institute of Particle Technology (LFG)Interdisciplinary Center for Functional Particle Systems (FPS)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Cauerstrasse 491058ErlangenGermany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG)Interdisciplinary Center for Functional Particle Systems (FPS)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Cauerstrasse 491058ErlangenGermany
| |
Collapse
|
12
|
Uematsu Y. Electrification of water interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33. [PMID: 34280896 DOI: 10.1088/1361-648x/ac15d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 05/04/2023]
Abstract
The surface charge of a water interface determines many fundamental processes in physical chemistry and interface science, and it has been intensively studied for over a hundred years. We summarize experimental methods to characterize the surface charge densities developed so far: electrokinetics, double-layer force measurements, potentiometric titration, surface-sensitive nonlinear spectroscopy, and surface-sensitive mass spectrometry. Then, we elucidate physical ion adsorption and chemical electrification as examples of electrification mechanisms. In the end, novel effects on surface electrification are discussed in detail. We believe that this clear overview of state of the art in a charged water interface will surely help the fundamental progress of physics and chemistry at interfaces in the future.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Carpenter AP, Foster MJ, Jones KK, Richmond GL. Effects of Salt-Induced Charge Screening on AOT Adsorption to the Planar and Nanoemulsion Oil-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8658-8666. [PMID: 34260854 DOI: 10.1021/acs.langmuir.0c03606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoemulsions, nanosized droplets of oil, are easily stabilized by interfacial electric fields from the adsorption of ionic surfactants. While mean-field theories can be used to describe the impact of these interfacial fields on droplet stability, the influence of these fields on the adsorption properties of ionic surfactants is not well-understood. In this work, we study the adsorption of the surfactant sodium dioctyl sulfosuccinate (AOT) at the nanoemulsion and planar oil-water interfaces and investigate how salt-induced charge-screening affects AOT adsorption. In the absence of salt, vibrational sum-frequency scattering spectroscopy measurements reveal the ΔGads and the maximum surface density is the same for AOT at the hexadecane nanoemulsion surface as at the planar hexadecane-H2O interface. Upon the addition of NaCl, an increase in AOT surface density is detected at both interfaces, indicating that repulsive electrostatic interactions between AOT monomers are the dominant force limiting surfactant adsorption at both interfaces. The bulky alkyl chains of AOT molecules cause our observations in this study to differ from those found in previous studies investigating the adsorption of linear-chain ionic surfactants to the nanoemulsion surface. These results provide necessary information for understanding factors limiting the adsorption of ionic surfactants to nanodroplet surfaces and highlight the need for further studies into the adsorption properties of more complex macromolecules at nanoemulsion surfaces.
Collapse
Affiliation(s)
- Andrew P Carpenter
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Marc J Foster
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Konnor K Jones
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
14
|
Carpenter AP, Christoffersen EL, Mapile AN, Richmond GL. Assessing the Impact of Solvent Selection on Vibrational Sum-Frequency Scattering Spectroscopy Experiments. J Phys Chem B 2021; 125:3216-3229. [PMID: 33739105 DOI: 10.1021/acs.jpcb.1c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of vibrational sum-frequency scattering (S-VSF) spectroscopy has opened the door to directly probing nanoparticle surfaces with an interfacial and chemical specificity that was previously reserved for planar interfacial systems. Despite its potential, challenges remain in the application of S-VSF spectroscopy beyond simplified chemical systems. One such challenge includes infrared absorption by an absorptive continuous phase, which will alter the spectral lineshapes within S-VSF spectra. In this study, we investigate how solvent vibrational modes manifest in S-VSF spectra of surfactant stabilized nanoemulsions and demonstrate how corrections for infrared absorption can recover the spectral features of interfacial solvent molecules. We also investigate infrared absorption for systems with the absorptive phase dispersed in a nonabsorptive continuous phase to show that infrared absorption, while reduced, will still impact the S-VSF spectra. These studies are then used to provide practical recommendations for anyone wishing to use S-VSF to study nanoparticle surfaces where absorptive solvents are present.
Collapse
Affiliation(s)
- Andrew P Carpenter
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Evan L Christoffersen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Ashley N Mapile
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
15
|
Müller P, Bonthuis DJ, Miller R, Schneck E. Ionic Surfactants at Air/Water and Oil/Water Interfaces: A Comparison Based on Molecular Dynamics Simulations. J Phys Chem B 2021; 125:406-415. [DOI: 10.1021/acs.jpcb.0c08615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Paulina Müller
- Physics Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Douwe Jan Bonthuis
- Institute of Theoretical and Computational Physics, Technische Universität Graz, 8010 Graz, Austria
| | - Reinhard Miller
- Physics Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Physics Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
16
|
Pullanchery S, Kulik S, Okur HI, de Aguiar HB, Roke S. On the stability and necessary electrophoretic mobility of bare oil nanodroplets in water. J Chem Phys 2020; 152:241104. [DOI: 10.1063/5.0009640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- S. Pullanchery
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), Institute of Materials Science (IMX) and Engineering, School of Engineering (STI), and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S. Kulik
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), Institute of Materials Science (IMX) and Engineering, School of Engineering (STI), and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - H. I. Okur
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), Institute of Materials Science (IMX) and Engineering, School of Engineering (STI), and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - H. B. de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - S. Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), Institute of Materials Science (IMX) and Engineering, School of Engineering (STI), and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|