1
|
He G, Parenti KR, Budden PJ, Niklas J, Macdonald T, Kumarasamy E, Chen X, Yin X, McCamey DR, Poluektov OG, Campos LM, Sfeir MY. Unraveling Triplet Formation Mechanisms in Acenothiophene Chromophores. J Am Chem Soc 2023; 145:22058-22068. [PMID: 37787467 DOI: 10.1021/jacs.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter J Budden
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas Macdonald
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xing Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
2
|
Kefer O, Ahrens L, Han J, Wollscheid N, Misselwitz E, Rominger F, Freudenberg J, Dreuw A, Bunz UHF, Buckup T. Efficient Intramolecular Singlet Fission in Spiro-Linked Heterodimers. J Am Chem Soc 2023; 145:17965-17974. [PMID: 37535495 DOI: 10.1021/jacs.3c05518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.
Collapse
Affiliation(s)
- Oskar Kefer
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Erik Misselwitz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
3
|
He G, Parenti KR, Campos LM, Sfeir MY. Direct Exciton Harvesting from a Bound Triplet Pair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203974. [PMID: 35973675 DOI: 10.1002/adma.202203974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Singlet fission is commonly defined as the generation of two triplet excitons from a single absorbed photon. However, ambiguities within this definition arise due to the complexity of the various double triplet states that exist in SF chromophores and the corresponding interconversion processes. To clarify this process, singlet fission is frequently depicted as sequential two-step conversion in which a singlet exciton decays into a bound triplet-pair biexciton state that dissociates into two "free" triplet excitons. However, this model discounts the potential for direct harvesting from the coupled biexciton state. Here, it is demonstrated that individual triplet excitons can be extracted directly from a bound triplet pair. It is demonstrated that due to the requirement for geminate triplet-triplet annihilation in intramolecular singlet fission compounds, unique spectral and kinetic signatures can be used to quantify triplet-pair harvesting yields. An internal quantum efficiency for triplet exciton transfer from the triplet pair of >50%, limited only by the solubility of the compounds is achieved. The harvesting process is not dependent on the net multiplicity of the triplet-pair state, suggesting that an explicit, independent dissociation step is not a requirement for using triplet pairs to do chemical or electrical work.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| |
Collapse
|
4
|
Tian W, Sukhanov AA, Bussotti L, Pang J, Zhao J, Voronkova VK, Di Donato M, Li MD. Charge Separation and Intersystem Crossing in Homo- and Hetero-Compact Naphthalimide Dimers. J Phys Chem B 2022; 126:4364-4378. [PMID: 35649261 DOI: 10.1021/acs.jpcb.2c02276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Naphthalimide (NI) homo- and hetero-dimers adopting orthogonal geometry were prepared to study photo-induced symmetry-breaking charge transfer (SBCT) and charge recombination (CR)-induced intersystem crossing (ISC). The two moieties in the dimer are connected either at the 3-C or 4-C position of the NI unit. The photophysical properties of the dimers were studied with steady-state and transient absorption spectroscopic methods. Significant CT only occurs for the hetero-dimer, in which one NI unit has a 4-amino substituent and the other NI unit is without it. The CR-induced ISC is most efficient for this dimer (singlet oxygen quantum yield ΦΔ = 50.3%). For the homo-dimer, in which both NI units did not present amino substitution, SBCT was not observed. Based on the electrochemical studies, we propose that the absence of SBCT for the homo-dimer is attributed to its high oxidation potential and low reduction potential. Femtosecond transient absorption (fs TA) spectra show that there is no charge separation (CS) for the homo-dimer. Nanosecond transient absorption spectroscopy indicate the formation of a triplet state with electron delocalization for the homo dimer, with a lifetime of 72.0 μs, while for the hetero dimer a triplet state with an intrinsic lifetime of 206.4 μs is observed. CS (11.6 ps) and slow CR-induced ISC (>1.5 ns) were observed for the hetero-dimer. Time-resolved electron paramagnetic resonance spectra give the zero-field splitting parameters (|D| = 1894 MHz and |E| = 111 MHz) and electron spin polarization patterns (e, e, e, a, a, a) for the triplet state of the hetero-dimer, inferring that the triplet state of the hetero-dimer is confined on the amino-substituted NI moiety.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
- ICCOM-CNR, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| |
Collapse
|
5
|
Ahrens L, Wollscheid N, Han J, Kefer O, Rominger F, Roozbeh A, Freudenberg J, Dreuw A, Bunz UHF, Buckup T. Structure Set in Stone: Designing Rigid Linkers to Control the Efficiency of Intramolecular Singlet Fission. J Phys Chem B 2021; 125:13235-13245. [PMID: 34812631 DOI: 10.1021/acs.jpcb.1c07122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research on materials facilitating efficient singlet fission (SF) is driven by a possible reduction of thermalization losses in organic photovoltaic devices. Intramolecular SF (iSF) is in this context of special interest, as the targeted modification of either chromophores or linkers enables gradual variations of molecular properties. In this combined synthetic, spectroscopic, and computational work, we present and investigate nine novel spiro-linked azaarene dimers, which undergo efficient iSF with triplet yields up to 199%. Additional molecular braces enhance the rigidity of these tailor-made dimers (TMDs), resulting in great agreement between crystal structures and predicted optimal geometries for iSF in solution. Regardless of the employed chromophores and linkages, the dynamics of all nine TMDs are perfectly described by a unified kinetic model. Most notably, an increase in the orbital overlap of the π-systems by decreasing the twist angle between the two chromophores does not only increase the rate of formation of the correlated triplet pair but also further promotes its decorrelation. This new structure-function relationship represents a promising strategy toward TMDs with high triplet lifetimes to be utilized in optoelectronic devices.
Collapse
Affiliation(s)
- Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Oskar Kefer
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ashkan Roozbeh
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Wang C, Xiong MC, Zhao X, Liu KH. Kinetics study on reaction of atenolol with singlet oxygen by directly monitoring the 1O2 phosphorescence. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Chen Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming-chen Xiong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuan Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kun-hui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|