1
|
Rabah J, Nasrallah H, Wright K, Gérard I, Fensterbank H, Bui TTV, Marrot J, Tran TT, Fatima A, Ha-Thi MH, Méallet R, Burdzinski G, Clavier G, Boujday S, Cachet H, Debiemme-Chouvy C, Maisonhaute E, Vallée A, Allard E. Clicked BODIPY-Fullerene-Peptide Assemblies: Studies of Electron Transfer Processes in Self-Assembled Monolayers on Gold Surfaces. Chempluschem 2024; 89:e202300717. [PMID: 38406894 DOI: 10.1002/cplu.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
Two BODIPY-C60-peptide assemblies were synthesized by CuAAC reactions of BODIPY-C60 dyads and a helical peptide functionalized with a terminal alkyne group and an azide group, respectively. The helical peptide within these assemblies was functionalized at its other end by a disulfide group, allowing formation of self-assembled monolayers (SAMs) on gold surfaces. Characterizations of these SAMs, as well as those of reference molecules (BODIPY-C60-alkyl, C60-peptide and BODIPY-peptide), were carried out by PM-IRRAS and cyclic voltammetry. BODIPY-C60-peptide SAMs are more densely packed than BODIPY-C60-alkyl and BODIPY-peptide based SAMs. These findings were attributed to the rigid peptide helical conformation along with peptide-peptide and C60-C60 interactions within the monolayers. However, less dense monolayers were obtained with the target assemblies compared to the C60-peptide, as the BODIPY entity likely disrupts organization within the monolayers. Finally, electron transfer kinetics measurements by ultra-fast electrochemistry experiments demonstrated that the helical peptide is a better electron mediator in comparison to alkyl chains. This property was exploited along with those of the BODIPY-C60 dyads in a photo-current generation experiment by converting the resulting excited and/or charge separated states from photo-illumination of the dyad into electrical energy.
Collapse
Affiliation(s)
- Jad Rabah
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Houssein Nasrallah
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Karen Wright
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Isabelle Gérard
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Hélène Fensterbank
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Thi-Tuyet-Van Bui
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Jérôme Marrot
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Thu-Trang Tran
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Anam Fatima
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Rachel Méallet
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Gotard Burdzinski
- Adam Mickiewicz University, Poznan, Faculty of Physics Poznań, PL-61614, Poznan, Poland
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005, Paris, France
| | - Hubert Cachet
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Catherine Debiemme-Chouvy
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Emmanuel Maisonhaute
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Anne Vallée
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005, Paris, France
| | - Emmanuel Allard
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| |
Collapse
|
2
|
Knoll S, Zens C, Maisuradze T, Schmidt H, Kupfer S, Zedler L, Dietzek-Ivanšić B, Streb C. Light-Induced Charge Separation in Covalently Linked BODIPY-Quinone-Alkyne Dyads. Chemistry 2024; 30:e202303250. [PMID: 38411403 DOI: 10.1002/chem.202303250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
Visible light-induced charge separation and directional charge transfer are cornerstones for artificial photosynthesis and the generation of solar fuels. Here, we report synthetic access to a series of noble metal-free donor-acceptor dyads based on bodipy light-absorbers and redox-active quinone/anthraquinone charge storage sites. Peripheral functionalization of the quinone/anthraquinone units with alkynes primes the dyads for integration into a range of light-harvesting systems, e. g., by Cu-catalyzed cycloadditions (CLICK chemistry) or Pd-catalyzed C-C cross-coupling reactions. Initial photophysical, electrochemical and theoretical analyses reveal the principal processes during the light-induced charge separation in the reported dyads.
Collapse
Affiliation(s)
- Sebastian Knoll
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Tamar Maisuradze
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Heiner Schmidt
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Linda Zedler
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
3
|
Huang W, Zhang W, Chen G, Chen Y, Ma J, Huang D, Zhao Q, Wu B. Visible light-driven oxidation of non-native substrate by laccase attached on Ru-based metal-organic frameworks. J Environ Sci (China) 2024; 137:741-753. [PMID: 37980056 DOI: 10.1016/j.jes.2023.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 11/20/2023]
Abstract
Light-induced electron transfer can broaden the substrate range of metalloenzyme. However, the efficiency of photo-enzyme coupling is limited by the poor combination of photosensitizer or photocatalyst with enzyme. Herein, we prepared the nano-photocatalyst MIL-125-NH2@Ru(bpy) by in site embedding ruthenium pyridine-diimine complex [Ru(bpy)3]2+ into metal organic frameworks MIL-125-NH2 and associated it with multicopper oxidase (MCO) laccase. Compared to [Ru(bpy)3]2+, the coupling efficiency of MIL-125-NH2@Ru(bpy)3 for enzymatic oxygen reduction increased by 35.7%. A series of characterizations confirmed that the amino group of laccase formed chemical bonds with the surface defects or hydrophobic groups of MIL-125-NH2@Ru(bpy)3. Consequently, the tight binding accelerated the quenching process and electron transfer between laccase and the immobilized ruthenium pyridine-diimine complex. This work would open an avenue for the synthesis of MOFs photocatalyst towards photo-enzyme coupling.
Collapse
Affiliation(s)
- Wenguang Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guantongyi Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Jun Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Dawei Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Qinzheng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| |
Collapse
|
4
|
Wang H, Qi X, Huang T. Synthesis of a new tripod BODIPY dye bearing N- tert-Butoxycarbonyl amine and its acetylation. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Huanbin Wang
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, P R China
| | - Xin Qi
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, P R China
| | - Tianyu Huang
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, P R China
| |
Collapse
|
5
|
Fatima A, Rabah J, Allard E, Fensterbank H, Wright K, Burdzinski G, Clavier G, Sliwa M, Pino T, Méallet-Renault R, Steenkeste K, Ha-Thi MH. Selective population of triplet excited states in heavy-atom-free BODIPY-C 60 based molecular assemblies. Photochem Photobiol Sci 2022; 21:1573-1584. [PMID: 35612713 DOI: 10.1007/s43630-022-00241-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
Abstract
Photophysical studies on a BODIPY-fullerene-distyryl BODIPY triad (BDP-C60-DSBDP) and its reference dyads (BODIPY-fullerene; BDP-C60 and distyryl BODIPY-fullerene; DSBDP-C60) are presented herein. In the triad, the association of the two chromophore units linked by a fullerene moiety leads to strong near UV-Visible light absorption from 300 to 700 nm. The triplet-excited state was observed upon visible excitation in all these assemblies, and shown to be localized on the C60 or BODIPY moieties. Using quantitative nanosecond transient absorption, we provide a complete investigation on the lifetime and formation quantum yield of the triplet-excited state. In the BDP-C60 dyad, the triplet excited state of C60 (τ = 7 ± 1 μs) was obtained with a quantum yield of 40 ± 8%. For the DSBDP-C60 dyad and BDP-C60-DSBDP triad, a longer-lived triplet excited state with a lifetime of around 250 ± 20 μs centered on the DSBDP moiety was formed, with respective quantum yields of 37 ± 8 and 20 ± 4%. Triplet-triplet annihilation up-conversion is characterized in the BDP-C60 dyad and the bichromophoric triad in the presence of perylene and DSBDP-monomer as respective annihilators. The photo-induced formation of a long-lived 3DSBDP* in the triad coupled with panchromatic light absorption offers potential applications as a heavy-atom-free organic triplet photosensitizer.
Collapse
Affiliation(s)
- Anam Fatima
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Jad Rabah
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Emmanuel Allard
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France.
| | - Hélène Fensterbank
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Karen Wright
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000, Versailles, France
| | - Gotard Burdzinski
- Adam Mickiewicz Univ in Poznan, Fac Phys, Quantum Elect Lab, 61614, Poznan, Poland
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59 000, Lille, France
| | - Thomas Pino
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Rachel Méallet-Renault
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
| | - Karine Steenkeste
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
| |
Collapse
|
6
|
Rabah J, Yonkeu L, Wright K, Vallée A, Méallet-Renault R, Ha-Thi MH, Fatima A, Clavier G, Fensterbank H, Allard E. Synthesis of a dual clickable fullerene platform and construction of a dissymmetric BODIPY-[60]Fullerene-DistyrylBODIPY triad. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tracking light-induced electron transfer toward O 2 in a hybrid photoredox-laccase system. iScience 2021; 24:102378. [PMID: 33948559 PMCID: PMC8080520 DOI: 10.1016/j.isci.2021.102378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
Photobiocatalysis uses light to perform specific chemical transformations in a selective and efficient way. The intention is to couple a photoredox cycle with an enzyme performing multielectronic catalytic activities. Laccase, a robust multicopper oxidase, can be envisioned to use dioxygen as a clean electron sink when coupled to an oxidation photocatalyst. Here, we provide a detailed study of the coupling of a [Ru(bpy)3]2+ photosensitizer to laccase. We demonstrate that efficient laccase reduction requires an electron relay like methyl viologen. In the presence of dioxygen, electrons transiently stored in superoxide ions are scavenged by laccase to form water instead of H2O2. The net result is the photo accumulation of highly oxidizing [Ru(bpy)3]3+. This study provides ground for the use of laccase in tandem with a light-driven oxidative process and O2 as one-electron transfer relay and as four-electron substrate to be a sustainable final electron acceptor in a photocatalytic process. An electron relay boosts photoreduction of laccase Superoxide is efficiently captured by laccase preventing formation of H2O2 Light activation reveals information on elementary steps inside the enzyme Laccase enables O2 as terminal electron acceptor for oxidative photocatalysis
Collapse
|
8
|
Guille-Collignon M, Delacotte J, Lemaître F, Labbé E, Buriez O. Electrochemical Fluorescence Switch of Organic Fluorescent or Fluorogenic Molecules. CHEM REC 2021; 21:2193-2202. [PMID: 33656794 DOI: 10.1002/tcr.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
This short review is aimed at emphasizing the most prominent recent works devoted to the fluorescence modulation of organic fluorescent or fluorogenic molecules by electrochemistry. This still expanding research field not only addresses the smart uses of known molecules or the design of new ones, but also investigates the development of instrumentation providing time- and space-resolved information at the molecular level. Important considerations including fluorescent/fluorogenic probes, reversible/irreversible fluorescence switch, direct/indirect fluorescence modulation, or environment properties are especially scrutinized in recent works dealing with bioanalysis perspectives.
Collapse
Affiliation(s)
- Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|