1
|
Taarit I, Sommer Q, Guénée L, Piguet C. Dinuclear Heteroleptic Erbium Complexes for Improving Molecular-Based Light Upconversion in Solution? Inorg Chem 2025; 64:6575-6588. [PMID: 39981708 DOI: 10.1021/acs.inorgchem.4c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
In an attempt to boost molecular-based excited-state absorption (ESA) via cross-relaxation (CR), the back-to-back ditridentate polyaromatic 2,2',6,6'-tetrakis(1-methyl-1H-benzo[d]imidazole-2-yl)-4,4'-bipyridine ligand (L4) was reacted with neutral [Ln(hfac)3] lanthanide cargoes (Ln = Y, Eu, and Er and H-hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) to give dinuclear erbium [(hfac)3LnL4Ln(hfac)3] ≡ [L4Ln2(hfac)6] adducts. Their crystal structures confirm the formation of dimeric molecular scaffolds made of two nine-coordinated trivalent [LnN3O6] chromophores separated by a 4,4'-bipyridine bridge with Ln···Ln distances within the nanometric range (Eu···Eu = 11.69 Å, Y···Y = 11.65 Å, and Er···Er = 12.12 Å). Thermodynamic studies in dichloromethane provide critical insights into the formation and stability of these adducts. Under near-infrared (NIR) excitation at 801 nm in solution, [L4Er2(hfac)6] exhibits ESA light upconversion with blueish-green emissions at 525 and 542 nm corresponding to Er(2H11/2,4S3/2 → 4I15/2) transitions. Thanks to the pertinent speciation in dichloromethane, we could extract a reliable upconversion quantum yield and brightness for the targeted dinuclear [L4Er2(hfac)6] adduct in solution. They largely overpass by 2 orders of magnitude those of the unsaturated mononuclear [L4Er(hfac)3] intermediate but remain comparable to data reported for related saturated monomeric adducts in the same conditions. No global beneficial cross-relaxation effect could thus be unambiguously identified.
Collapse
Affiliation(s)
- Inès Taarit
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Quentin Sommer
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Lloyd Williams OH, Cox CS, Zhang MY, Lessio M, Rusli O, Donald WA, Jekimovs L, Marshall DL, Pfrunder MC, Poad BLJ, Brotin T, Rijs NJ. Cation induced changes to the structure of cryptophane cages. Dalton Trans 2024; 53:18473-18483. [PMID: 39352246 DOI: 10.1039/d4dt01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Here the monocation complexes of seven anti-cryptophanes are examined with high-resolution ion-mobility mass spectrometry. The relative size of the [cation + cryptophane]+ complexes were compared based on their measured mobilities and derived collisional cross sections. A paradoxical trend of structural contraction was observed for complexes of increasing cation size. Density functional theory confirmed encapsulation occurs for cation = Na+, K+, Rb+, Cs+ and NH4+. However, cation = Li+ preferred oxygen coordination at a linker over encapsulation within the cavity, leading to a slightly larger gas phase structure overall. Protonated cryptophanes yielded much larger collision cross sections via imploded cryptophane structures. Thus, competing physical effects led to the observed non-periodic size trend of the complexes. Trends in complexation from isothermal titration calorimetry and other condensed phase techniques were borne out by the gas phase studies. Further, predicted cavity sizes compared with the gas phase experimental findings reveal more about the encapsulation mechanisms themselves.
Collapse
Affiliation(s)
| | - Claudia S Cox
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Meng Yuan Zhang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Martina Lessio
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Olivia Rusli
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | | | - Lachlan Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4001 Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, 4001 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4001 Australia
| | - Thierry Brotin
- ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Nicole J Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Harmon C, Bui A, Espejo JM, Gancayco M, Le JM, Rangel J, Eggers DK. Solvation free energy in governing equations for DNA hybridization, protein-ligand binding, and protein folding. FEBS Open Bio 2024; 14:1837-1850. [PMID: 39289322 PMCID: PMC11532980 DOI: 10.1002/2211-5463.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
This work examines the thermodynamics of model biomolecular interactions using a governing equation that accounts for the participation of bulk water in the equilibria. In the first example, the binding affinities of two DNA duplexes, one of nine and one of 10 base pairs in length, are measured and characterized by isothermal titration calorimetry (ITC) as a function of concentration. The results indicate that the change in solvation free energy that accompanies duplex formation (ΔGS) is large and unfavorable. The duplex with the larger number of G:C pairings yields the largest change in solvation free energy, ΔGS = +460 kcal·mol-1per base pair at 25 °C. A van't Hoff analysis of the data is complicated by the varying degree of intramolecular base stacking within each DNA strand as a function of temperature. A modeling study reveals how the solvation free energy alters the output of a typical ITC experiment and leads to a good, though misleading, fit to the classical equilibrium equation. The same thermodynamic framework is applied to a model protein-ligand interaction, the binding of ribonuclease A with the nucleotide inhibitor 3'-UMP, and to a conformational equilibrium, the change in tertiary structure of α-lactalbumin in molar guanidinium chloride solutions. The ribonuclease study yields a value of ΔGS = +160 kcal·mol-1, whereas the folding equilibrium yields ΔGS ≈ 0, an apparent characteristic of hydrophobic interactions. These examples provide insight on the role of solvation energy in binding equilibria and suggest a pivot in the fundamental application of thermodynamics to solution chemistry.
Collapse
Affiliation(s)
| | - Austin Bui
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | | | - Marc Gancayco
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | - Jennifer M. Le
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | - Juan Rangel
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | | |
Collapse
|
4
|
Le-Hoang G, Guénée L, Sommer Q, Piguet C. Tuning Selectivity and Stability in Heteroleptic Lanthanide Adducts by Ligand Design. Inorg Chem 2024; 63:3712-3723. [PMID: 38334740 DOI: 10.1021/acs.inorgchem.3c03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Terdentate ligands L10-L14 and their heteroleptic [LkLn(hfac)3] complexes (Ln = La, Eu, Gd, Er, or Y; H-hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) exhibit multifactorial correlations between the ligand's structural frameworks, including their level of preorganization and steric congestion and their affinities and selectivities for catching the trivalent lanthanide containers [Ln(hfac)3]. The polyaromatic ligand scaffolds could be stepwise modulated via lanthanide-template synthetic strategies, using intermolecular rhodium-catalyzed insertion reactions. The increasing level of preorganization along the L10 → L11 → L12 series leads to a duality in which larger thermodynamic formation constants with lanthanides in CD2Cl2 are accompanied by an unexpected decrease in the Ln-N affinities in the solid state, which could be assigned to a limited match between the lanthanide size and the enlarged preorganized cavities. On the contrary, a reduced stability is induced by the connection of additional methyl groups at position 1 of the benzimidazole moieties in L13 and L14, which is accompanied by an optimization of metal-nitrogen bond lengths. This study contributes to the rational design of highly stable neutral heteroleptic lanthanide β-diketonate adducts that resist dissociation in solution, a prerequisite for photophysical applications using these highly luminescent systems at the molecular level.
Collapse
Affiliation(s)
- Giau Le-Hoang
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Quentin Sommer
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Eggers DK, Le JM, Nham NT, Pham DN, Castellano BM. Dual Effect of Secondary Solutes on Binding Equilibria: Contributions from Solute-Reactant Interactions and Solute-Water Interactions. ACS OMEGA 2024; 9:3017-3027. [PMID: 38250344 PMCID: PMC10795149 DOI: 10.1021/acsomega.3c09329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
This study examines the role of water in binding equilibria with a special focus on secondary solutes (cosolutes) that influence the equilibrium but are not constituents of the final product. Using a thermodynamic framework that includes an explicit term for the release of water molecules upon binding, this investigation reveals how solutes may alter equilibria by changing the activity of the reactants, reflected in ΔG°(obs), and by changing the chemical potential of the solvent, reflected in ΔGS. The framework is applied to four experimental binding systems that differ in the degree of electrostatic contributions. The model systems include the chelation of Ca2+ by EDTA and three host-guest reactions; the pairings of p-sulfonatocalix[4]arene with tetramethylammonium ion, cucurbit[7]uril with N-acetyl-phenylalanine-amide, and β-cyclodextrin with adamantane carboxylate are tested. Each reaction pair is examined by isothermal titration calorimetry at 25 °C in the presence of a common osmolyte, sucrose, and a common chaotrope, urea. Molar solutions of trehalose and phosphate were also tested with selected models. In general, cosolutes that enhance binding tend to reduce the solvation free energy penalty and cosolutes that weaken binding tend to increase the solvation free energy penalty. Notably, the nonpolar-nonpolar interaction between adamantane carboxylate and β-cyclodextrin is characterized by a ΔGS value near zero. The results with β-cyclodextrin, in particular, prompt further discussions of the hydrophobic effect and the biocompatible properties of trehalose. Other investigators are encouraged to test and refine the approach taken here to further our understanding of solvent effects on molecular recognition.
Collapse
Affiliation(s)
- Daryl K. Eggers
- Department of Chemistry, San José State University, San José, California 95192-0101, United
States
| | | | | | - Duc N. Pham
- Department of Chemistry, San José State University, San José, California 95192-0101, United
States
| | | |
Collapse
|
6
|
Naseri S, Mirzakhani M, Besnard C, Guénée L, Briant L, Nozary H, Piguet C. Preorganized Polyaromatic Soft Terdentate Hosts for the Capture of [Ln(β-diketonate) 3 ] Guests in Solution. Chemistry 2023; 29:e202202727. [PMID: 36285628 DOI: 10.1002/chem.202202727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
The concept of preorganization is famous in coordination chemistry for having transformed flexible bidentate 2,2'-bipyridine scaffolds into rigid 1,10-phenanthroline platforms. The resulting boosted affinities for d-block cations has successfully paved the way for the design of a wealth of functional complexes, devices and materials for analysis and optics. Its extension toward terdentate homologues adapted for the selective complexation of f-block cations with larger coordination numbers remains more overlooked. The resulting rigidification of 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine ligands (L1-L7) produces the highly preorganized and extended polyaromatic benzo[4',5']imidazo[1',2' : 1,2]pyrido[3,4-b]benzo[4,5]imidazo[1,2-h][1,7]naphthyridines (L8-L11) receptors, which offer some novel and rare opportunities for efficiently complexing trivalent lanthanides with polyaromatic soft terimine ligands. The crystal structures of the stable heteroleptic [LkLn(hfac)3 ] adducts (Lk=L1, L8, L9; Ln=La, Eu, Gd, Er, Yb, Y; H-hfac=1,1,1,5,5,5-hexafluoropentane-2,4-dione) show a drastic decrease in the Ln-N bond valences upon replacement of the flexible ligand L1 with its preorganized counterparts L8 and L9. This points to a limited match between the preorganized cavity and the entering [Ln(hfac)3 ] lanthanide containers. However, thermodynamic studies conducted in dichloromethane reach the opposite conclusion, with an improved affinity, by up to three orders of magnitude for catching Ln(hfac)3 when L1 is replaced by the preorganized L8-L9 receptors. The key to the enigma lies in the removal of the energy penalty which accompanies the formation of flexible [L1Ln(hfac)3 ] complexes in solution. This driving force overcomes the poor match between the preorganized terdentate N∩ N∩ N cavity in L8 and L9 and the size of trivalent lanthanides. As planned, the rigid, planar and extended π-conjugated system found in L8 and L9 shifts the ligand-centered absorption bands by about 5000 cm-1 toward lower energies, a crucial point if these stable [L8Ln(hfac)3 ] and [L9Ln(hfac)3 ] platforms have to be considered for the visible sensitization of luminescent lanthanides in metallopolymers.
Collapse
Affiliation(s)
- Soroush Naseri
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Liza Briant
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
7
|
Brotin T, Berthault P, Chighine K, Jeanneau E. Impact of the Syn/ Anti Relative Configuration of Cryptophane-222 on the Binding Affinity of Cesium and Thallium. ACS OMEGA 2022; 7:48361-48371. [PMID: 36591199 PMCID: PMC9798743 DOI: 10.1021/acsomega.2c06570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
We report in this article the synthesis, the X-ray crystal structure of compound syn-2, and its binding properties with cesium and thallium in aqueous solution under basic conditions. Compound syn-2 is the diastereomeric compound of anti-1 that shows very high affinity for cesium and thallium in aqueous solution under the same conditions. Despite the close structural similarities that exist between the syn-2 and anti-1 compounds, they show large discrepancy in their ability to bind cesium and thallium cations in the same conditions. Indeed, the syn-2 derivative has a lower affinity for these two cationic species and the binding constants are several orders of magnitude lower than those found for its congener. The large differences in affinity observed with these two compounds can be explained by the relative position of the six hydroxyl groups to each other.
Collapse
Affiliation(s)
- Thierry Brotin
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Patrick Berthault
- CNRS,
CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine
et l’Energie, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Kévin Chighine
- CNRS,
CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine
et l’Energie, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Erwann Jeanneau
- Centre
de Diffractométrie Henri Longchambon Université de Lyon
1, 5 rue la Doua, 69100 Villeurbanne, France
| |
Collapse
|
8
|
Espitia-Galindo N, Hernández DJ, Zapata-Rivera J, Vargas EF. Complexation of sodium sulfamerazine with an ionic resorcin[4]arene: thermodynamic and computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Mirzakhani M, Nozary H, Naseri S, Besnard C, Guénée L, Piguet C. Bottom-Up Approach for the Rational Loading of Linear Oligomers and Polymers with Lanthanides. Inorg Chem 2021; 60:15529-15542. [PMID: 34601875 DOI: 10.1021/acs.inorgchem.1c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adducts between luminescent lanthanide tris(β-diketonate)s and diimine or triimine ligands have been explored exhaustively for their exceptional photophysical properties. Their formation, stability, and structures in solution, together with the design of extended metallopolymers exploiting these building blocks, remain, however, elusive. The systematic peripheral substitution of tridentate 2,6-bis(benzimidazol-2-yl)pyridine binding units (Lk = L1-L5), taken as building blocks for linear oligomers and polymers, allows a fine-tuning of their affinity toward neutral [Ln(hfa)3] (hfa = hexafluoroacetylacetonate) lanthanide containers in the [LkLn(hfa)3] adducts. Two trends emerge with (i) an unusual pronounced thermodynamic selectivity for midrange lanthanides (Ln = Eu) and (ii) an intriguing influence of remote peripheral substitutions of the benzimidazole rings on the affinity of the tridentate unit for [Ln(hfa)3]. These trends are amplified upon the connection of several tridentate binding units via their benzimidazole rings to give linear segmental dimers (L6) and trimers (L7), which are considered as models for programming linear Wolf-Type II metallopollymers. Modulation of the affinity between the terminal and central binding units in the linear multitridentate ligands deciphers the global decrease of metal-ligand binding strengths with an increase in the length of the receptors (monomer → dimer → trimer → polymer). Application of the site binding model shed light onto the origin of the variation of the thermodynamic affinities: a prerequisite for the programmed loading of a polymer backbone with luminescent lanthanide β-diketonates. Analysis of the crystal structures for these adducts reveals delicate correlations between the chemical bond lengths measured in the solid state (or bond valence parameters) and the metal-ligand affinities operating in solution.
Collapse
Affiliation(s)
- Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Soroush Naseri
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
10
|
Anisimov YA, Evitts RW, Cree DE, Wilson LD. Polyaniline/Biopolymer Composite Systems for Humidity Sensor Applications: A Review. Polymers (Basel) 2021; 13:2722. [PMID: 34451261 PMCID: PMC8400915 DOI: 10.3390/polym13162722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022] Open
Abstract
The development of polyaniline (PANI)/biomaterial composites as humidity sensor materials represents an emerging area of advanced materials with promising applications. The increasing attention to biopolymer materials as desiccants for humidity sensor components can be explained by their sustainability and propensity to absorb water. This review represents a literature survey, covering the last decade, which is focused on the interrelationship between the core properties and moisture responsiveness of multicomponent polymer/biomaterial composites. This contribution provides an overview of humidity-sensing materials and the corresponding sensors that emphasize the resistive (impedance) type of PANI devices. The key physicochemical properties that affect moisture sensitivity include the following: swelling, water vapor adsorption capacity, porosity, electrical conductivity, and enthalpies of adsorption and vaporization. Some key features of humidity-sensing materials involve the response time, recovery time, and hysteresis error. This work presents a discussion on various types of humidity-responsive composite materials that contain PANI and biopolymers, such as cellulose, chitosan and structurally related systems, along with a brief overview of carbonaceous and ceramic materials. The effect of additive components, such as polyvinyl alcohol (PVA), for film fabrication and their adsorption properties are also discussed. The mechanisms of hydration and proton transfer, as well as the relationship with conductivity is discussed. The literature survey on hydration reveals that the textural properties (surface area and pore structure) of a material, along with the hydrophile-lipophile balance (HLB) play a crucial role. The role of HLB is important in PANI/biopolymer materials for understanding hydration phenomena and hydrophobic effects. Fundamental aspects of hydration studies that are relevant to humidity sensor materials are reviewed. The experimental design of humidity sensor materials is described, and their relevant physicochemical characterization methods are covered, along with some perspectives on future directions in research on PANI-based humidity sensors.
Collapse
Affiliation(s)
- Yuriy A. Anisimov
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| | - Richard W. Evitts
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Duncan E. Cree
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
11
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|