1
|
Shukla A, Biswal AS, Chowdhury A, Halder R, Chatterjee S. Aggregation-Induced Modulation of Ground and Excited State Photophysics of 5-( tert-Butyl)-2-Hydroxy-1,3-Isophthalaldehyde (5- tBHI). J Phys Chem B 2024; 128:5437-5453. [PMID: 38662934 DOI: 10.1021/acs.jpcb.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
5-(tert-Butyl)-2-hydroxy-1,3-isophthalaldehyde (5-tBHI) is a photochromic material susceptible to either excited state proton transfer or excited state intramolecular proton transfer, depending upon the solvent. However, it has also been found to aggregate in the presence of sodium dodecyl sulfate. In this current study, based on the steady-state and time-resolved spectroscopy, supported by crystallography, quantum chemical density functional theory calculation, and molecular dynamics (MD) simulation, we report on the aggregation of this potential single benzene-based emitter (SBBE) in neat solvents as well as solid phase to modulate its photophysics. It has been found that 5-tBHI forms mixed aggregates of different orders, owing to the presence of both enolic and tautomeric forms, to yield tunable emission, although the emission intensity is quenched. These findings suggest that the intramolecular hydrogen bonding of 5-tBHI not only limits intermolecular interactions but also promotes nonradiative deactivation pathways. Hence, designing and structural engineering, with a focus to suppressing intramolecular hydrogen bonding as well as increasing through space conjugation by replacing the aldehydic moieties with bulky aliphatic or aromatic ketonic groups, can be a plausible approach to yielding improved probes with tunable emission and higher fluorescence quantum yields.
Collapse
Affiliation(s)
- Aparna Shukla
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004 Jharkhand, India
| | - Abhipsa Sekhar Biswal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004 Jharkhand, India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Soumit Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004 Jharkhand, India
| |
Collapse
|
2
|
Mazaheri Z, Papari GP, Andreone A. Dielectric Response of Different Alcohols in Water-Rich Binary Mixtures from THz Ellipsometry. Int J Mol Sci 2024; 25:4240. [PMID: 38673827 PMCID: PMC11049918 DOI: 10.3390/ijms25084240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
We report a study on the hydrogen bonding mechanisms of three aliphatic alcohols (2-propanol, methanol, and ethanol) and one diol (ethylene glycol) in water solution using a time-domain ellipsometer in the THz region. The dielectric response of the pure liquids is nicely modeled by the generalized Debye-Lorentz equation. For binary mixtures, we analyze the data using a modified effective Debye model, which considers H-bond rupture and reformation dynamics and the motion of the alkyl chains and of the OH groups. We focus on the properties of the water-rich region, finding anomalous behavior in the absorption properties at very low solute molar concentrations. These results, first observed in the THz region, are in line with previous findings from different experiments and can be explained by taking into account the amphiphilic nature of the alcohol molecules.
Collapse
Affiliation(s)
- Zahra Mazaheri
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Complesso MSA, 80126 Naples, Italy; (Z.M.); (G.P.P.)
- Naples Research Unit, National Institute for Nuclear Physics (INFN), Complesso MSA, 80126 Naples, Italy
| | - Gian Paolo Papari
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Complesso MSA, 80126 Naples, Italy; (Z.M.); (G.P.P.)
- Naples Research Unit, National Institute for Nuclear Physics (INFN), Complesso MSA, 80126 Naples, Italy
| | - Antonello Andreone
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Complesso MSA, 80126 Naples, Italy; (Z.M.); (G.P.P.)
- Naples Research Unit, National Institute for Nuclear Physics (INFN), Complesso MSA, 80126 Naples, Italy
| |
Collapse
|
3
|
Besford QA, Van den Heuvel W, Christofferson AJ. Dipolar Dispersion Forces in Water-Methanol Mixtures: Enhancement of Water Interactions upon Dilution Drives Self-Association. J Phys Chem B 2022; 126:6231-6239. [PMID: 35976055 DOI: 10.1021/acs.jpcb.2c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mixtures of short-chain alcohols and water produce anomalous thermodynamic and structural quantities, including molecular segregation into water-rich and alcohol-rich components. Herein, we used molecular dynamics simulations with polarizable models to investigate interactions that could drive the self-association of water molecules in mixtures with methanol (MeOH). As water was diluted with MeOH, significant changes in the distribution of molecules and solvation properties occurred, where water exhibited a clear preference for self-association. When common structural quantities were analyzed, it was found that there was a clear reduction in water-water hydrogen bonding and tetrahedral order (both in terms of typical bulk behavior), contrary to the observed water self-association. However, when dipolar dispersion forces between all molecules as a function of system composition were analyzed, it was found that water-water dipolar interactions became significantly stronger with dilution (6-fold stronger interaction in 75% MeOH compared to 0% MeOH). This was only observed for water, where MeOH-MeOH interactions became weaker as the systems were more dilute in MeOH. These forces result from specific dipole orientations, likely occurring to adopt lower energy configurations (i.e., head-to-tail or antiparallel). For water, this may result from lost other interactions (e.g., hydrogen bonding), leading to more rotational freedom between the dipole moments. These intriguing changes in dipolar interactions, which directly result from structural changes, can therefore explain, in part, the driving force for water self-association in MeOH-water mixtures.
Collapse
Affiliation(s)
- Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Willem Van den Heuvel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
4
|
Dueby S, Dubey V, Indra S, Daschakraborty S. Non-monotonic composition dependence of the breakdown of Stokes-Einstein relation for water in aqueous solutions of ethanol and 1-propanol: explanation using translational jump-diffusion approach. Phys Chem Chem Phys 2022; 24:18738-18750. [PMID: 35900000 DOI: 10.1039/d2cp02664c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of experimental and simulation studies examined the validity of the Stokes-Einstein relationship (SER) of water in binary water/alcohol mixtures of different mixture compositions. These studies revealed a strong non-monotonic composition dependence of the SER with maxima at the specific alcohol mole fraction where the non-idealities of the thermodynamic and transport properties are observed. The translational jump-diffusion (TJD) approach elucidated the breakdown of the SER in pure supercooled water as caused by the jump translation of molecules. The breakdown of SER in the supercooled water/methanol binary mixture was successfully explained using the same TJD approach. To further generalize the picture, here we focus on the non-monotonic composition dependence of SER breakdown of water in two water/alcohol mixtures (water/ethanol and water/propanol) for a broad temperature range. In agreement with previous studies, maximum breakdown of SER is observed for the mixture with alcohol mole fraction x = 0.2. Diffusion of the water molecules at the maximum SER breakdown point is largely contributed by jump-diffusion. The residual-diffusion, obtained by subtracting the jump-diffusion from the total diffusion, approximately follows the SER for different compositions and temperatures. We also performed hydrogen (H-)bond dynamics and observed that the contribution of jump-diffusion is proportional to the total free energy of activation of breaking all H-bonds that exist around a molecule. This study, therefore, suggests that the more a molecule is trapped by H-bonding, the more likely it is to diffuse through the jump-diffusion mechanism, eventually leading to an increasing degree of SER breakdown.
Collapse
Affiliation(s)
- Shivam Dueby
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Vikas Dubey
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sandipa Indra
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
5
|
Crosio MA, Silber JJ, Moran Vieyra FE, Falcone RD, Borsarelli CD, Correa NM. Deciphering Solvation Effects in Aqueous Binary Mixtures by Fluorescence Behavior of 4-Aminophthalimide: The Comparison Between Ionic Liquids and Alcohols as Cosolvents. J Phys Chem B 2021; 125:13203-13211. [PMID: 34788537 DOI: 10.1021/acs.jpcb.1c06569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionic liquids (ILs) have received attention for many years due to them being very promising as green solvent substitutes, but they are not fully understood, especially their behavior dissolved in other solvents, for example, water. Thus, the goal of this contribution is to show insight into the different IL-water mixtures interaction. In this way, two protic ILs (PILs), ethylammonium nitrate (EAN) and 1-methylimidazolium acetate (MIA), mixed with water were investigated. To study the PILs-water interaction, the unique spectroscopical behavior in water of the molecular probe 4-aminophthalimide (4-AP) was used. 4-AP emission spectra show hypsochromic shifting by changing the excitation wavelength and, using time-resolved spectroscopy, can be detected by a blue shifting with time. Also, the water mixture of an aprotic IL, 1-methyl-3-butylimidazolium tetrafluoroborate (bmimBF4), and three alcohols, methanol (MeOH), 2-propanol (2-PrOH), and t-butanol (t-BOH), were investigated for comparison. Our results show that the water-ILs interaction is dominated by the size of the IL components, in particular, the cation size. Thus, in MIA-water and bmimBF4-water mixtures, 4-AP is mostly solvated by the IL, even at a low IL molar fraction, as in the t-BOH-water mixture. This finding is especially interesting when ILs-water mixtures are used as a solvent in an organic reaction, where it may call attention to water probably not being the solvent that is interacting with the reactants.
Collapse
Affiliation(s)
- Matias A Crosio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Av. Haya de la Torre s/N° Ciudad Universitaria C.P., X5000HUA, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre s/N° Ciudad Universitaria C.P., X5000HUA, Córdoba, Argentina
| | - Juana J Silber
- Instituto para el Desarrollo Agroindustrial y de la Salud, IDAS, (CONICET - UNRC), Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina.,Departamento de Química, Facultad Ciencias Exactas Fisico-Química y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina
| | - F Eduardo Moran Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina.,Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, G4200ABT, Santiago del Estero, Argentina
| | - R Darío Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud, IDAS, (CONICET - UNRC), Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina.,Departamento de Química, Facultad Ciencias Exactas Fisico-Química y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina
| | - Claudio D Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina.,Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, G4200ABT, Santiago del Estero, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud, IDAS, (CONICET - UNRC), Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina.,Departamento de Química, Facultad Ciencias Exactas Fisico-Química y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina
| |
Collapse
|
6
|
Nair AS, Bagchi B. Rigid Cations Induce Enhancement of Microheterogeneity and Exhibit Anomalous Ion Diffusion in Water-Ethanol Mixtures. J Phys Chem B 2021; 125:12274-12291. [PMID: 34726411 DOI: 10.1021/acs.jpcb.1c07698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the amphiphilic nature of ethanol in the aqueous solution, ions cause an interesting microheterogeneity where the water molecules and the hydroxy groups of ethanol preferentially solvate the ions, while the ethyl groups tend to occupy the intervening space. Using computer simulations, we study the dynamics of rigid monovalent cations (Li+, Na+, K+, and Cs+) in aqueous ethanol solutions with chloride as the counterion. We vary both the size of the ions and the composition of the mixture to explore size- and composition-dependent ion diffusion. The relative stability of enhanced microheterogeneous configurations makes ion diffusion slower than what would be surmised by using the bulk properties of the mixture, using the Stokes-Einstein relation. We study the structure through partial radial distribution functions and the stability through coordination number fluctuations. The ion diffusion coefficient exhibits sharp re-entrant behavior when plotted against viscosity varied by composition. Our studies reveal multiple anomalous features of ion motion in this mixture. We formulate a mode-coupling theory (MCT) that takes into account the interaction between different dynamical components; MCT can incorporate the effects of heterogeneous dynamics and nonlinearity in composition dependence that arise from the feedback between mutually dependent ion-solvent dynamics.
Collapse
Affiliation(s)
- Anjali S Nair
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Effect of the alkyl chain and composition on the thermodynamics of mixing of small alcohols and water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Halder R, Jana B. Exploring the role of hydrophilic amino acids in unfolding of protein in aqueous ethanol solution. Proteins 2020; 89:116-125. [PMID: 32860277 DOI: 10.1002/prot.25999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Hydrophobic association is the key contributor behind the formation of well packed core of a protein which is often believed to be an important step for folding from an unfolded chain to its compact functional form. While most of the protein folding/unfolding studies have evaluated the changes in the hydrophobic interactions during chemical denaturation, the role of hydrophilic amino acids in such processes are not discussed in detail. Here we report the role of the hydrophilic amino acids behind ethanol induced unfolding of protein. Using free energy simulations, we show that chicken villin head piece (HP-36) protein unfolds gradually in presence of water-ethanol binary mixture with increasing composition of ethanol. However, upon mutation of hydrophilic amino acids by glycine while keeping the hydrophobic amino acids intact, the compact state of the protein is found to be stable at all compositions with gradual flattening of the free energy landscape upon increasing compositions. The local environment around the protein in terms of ethanol/water number significantly differs in wild type protein compared to the mutated protein. The calculated Wyman-Tanford preferential binding coefficient of ethanol for wild type protein reveals that a greater number of cosolutes (here ethanol) bind to the unfolded state compared to its folded state. However, no significant increase in binding coefficient of ethanol at the unfolded state is found for mutated protein. Local-bulk partition coefficient calculation also suggests similar scenarios. Our results reveal that the weakening of hydrophobic interactions in aqueous ethanol solution along with larger preferential binding of ethanol to the unfolded state mediated by hydrophilic amino acids combinedly helps unfolding of protein in aqueous ethanol solution.
Collapse
Affiliation(s)
- Ritaban Halder
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| |
Collapse
|