1
|
Davoudi S, Vainikka PA, Marrink SJ, Ghysels A. Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen. J Chem Theory Comput 2025; 21:428-439. [PMID: 39807536 PMCID: PMC11736683 DOI: 10.1021/acs.jctc.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Molecular oxygen (O2) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins. To reach larger length scales with models, such as curved membranes in mitochondria or caveolae, coarse-grained (CG) simulations could be used at much lower computational cost than AA simulations. Yet a CG model for O2 is lacking. In this work, a CG model for O2 is therefore carefully selected from the Martini 3 force field based on criteria including size, zero charge, nonpolarity, solubility in nonpolar organic solvents, and partitioning in a phospholipid membrane. This chosen CG model for O2 (TC3 bead) is then further evaluated through the calculation of its diffusion constant in water and hexadecane, its permeability rate across pure phospholipid- and cholesterol-containing membranes, and its binding to the T4 lysozyme L99A protein. Our CG model shows semiquantitative agreement between CG diffusivity and permeation rates with the corresponding AA values and available experimental data. Additionally, it captures the binding to hydrophobic cavities of the protein, aligning well with the AA simulation of the same system. Thus, the results show that our O2 model approximates the behavior observed in the AA simulations. The CG O2 model is compatible with the widely used multifunctional Martini 3 force field for biological simulations, which will allow for the simulation of large biomolecular systems involved in O2's transport in the body.
Collapse
Affiliation(s)
- Samaneh Davoudi
- IBiTech
- BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance
98, 9000 Gent, Belgium
| | - Petteri A. Vainikka
- Centre
for Analysis and Synthesis, Lund University, Naturvetarvägen 22/Sölvegatan
39 A, 223 62 Lund, Sweden
| | - Siewert J. Marrink
- Molecular
Dynamics Group, Groningen University, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - An Ghysels
- IBiTech
− BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance
98, 9000 Gent, Belgium
| |
Collapse
|
2
|
Grinter R, Kropp A, Venugopal H, Senger M, Badley J, Cabotaje PR, Jia R, Duan Z, Huang P, Stripp ST, Barlow CK, Belousoff M, Shafaat HS, Cook GM, Schittenhelm RB, Vincent KA, Khalid S, Berggren G, Greening C. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 2023; 615:541-547. [PMID: 36890228 PMCID: PMC10017518 DOI: 10.1038/s41586-023-05781-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023]
Abstract
Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.
Collapse
Affiliation(s)
- Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Moritz Senger
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Jack Badley
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Princess R Cabotaje
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Ruyu Jia
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Zehui Duan
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
| | - Ping Huang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Christopher K Barlow
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Matthew Belousoff
- Centre for Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ralf B Schittenhelm
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia.
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Wu X, Hénin J, Baciou L, Baaden M, Cailliez F, de la Lande A. Mechanistic Insights on Heme-to-Heme Transmembrane Electron Transfer Within NADPH Oxydases From Atomistic Simulations. Front Chem 2021; 9:650651. [PMID: 34017816 PMCID: PMC8129163 DOI: 10.3389/fchem.2021.650651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
NOX5 is a member of the NADPH oxidase family which is dedicated to the production of reactive oxygen species. The molecular mechanisms governing transmembrane electron transfer (ET) that permits to shuttle electrons over the biological membrane have remained elusive for a long time. Using computer simulations, we report conformational dynamics of NOX5 embedded within a realistic membrane environment. We assess the stability of the protein within the membrane and monitor the existence of cavities that could accommodate dioxygen molecules. We investigate the heme-to-heme electron transfer. We find a reaction free energy of a few tenths of eV (ca. −0.3 eV) and a reorganization free energy of around 1.1 eV (0.8 eV after including electrostatic induction corrections). The former indicates thermodynamically favorable ET, while the latter falls in the expected values for transmembrane inter-heme ET. We estimate the electronic coupling to fall in the range of the μeV. We identify electron tunneling pathways showing that not only the W378 residue is playing a central role, but also F348. Finally, we reveal the existence of two connected O2−binding pockets near the outer heme with fast exchange between the two sites on the nanosecond timescale. We show that when the terminal heme is reduced, O2 binds closer to it, affording a more efficient tunneling pathway than when the terminal heme is oxidized, thereby providing an efficient mechanism to catalyze superoxide production in the final step. Overall, our study reveals some key molecular mechanisms permitting reactive oxygen species production by NOX5 and paves the road for further investigation of ET processes in the wide family of NADPH oxidases by computer simulations.
Collapse
Affiliation(s)
- Xiaojing Wu
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Jérôme Hénin
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| |
Collapse
|