1
|
Olszewska K, Mizera A, Ławniczak P, Kamińska A, Santillan R, Morales-Chamorro M, Ochoa ME, Farfán N, Łapiński A, Górecki M, Jastrzebska I, Runka T. Molecular Dynamics of Steroidal Rotors Probed by Theoretical, Spectroscopic and Dielectric Methods. Chemistry 2024; 30:e202303933. [PMID: 38311598 DOI: 10.1002/chem.202303933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Our study focuses on molecular rotors with fast-moving rotators and their potential applications in the development of new amphidynamic crystals. Steroidal molecular rotors with a dipolar fluorine-substituted phenyl group as the rotator were synthesized and characterized. Three different rotors were investigated with varying numbers of fluorine atoms. A comprehensive analysis was performed using vibrational spectroscopy (Raman, FT-IR), electronic circular dichroism (ECD), and dielectric response to understand the behavior of the investigated model rotors. The results were supported by theoretical calculations using Density Functional Theory (DFT) methods. The angle-dependent polarized Raman spectra confirmed the crystallinity of the samples. Nearly frequency and temperature-independent permittivity suggest low-frequency librational motion of stators. An in-depth analysis of ECD spectra revealed high conformational flexibility in solution, resulting in low ECD effects, while in the solid-state with restricted rotation, significant ECD effects were observed. These findings shed light on the conformational behavior and potential applications of the studied steroidal molecular rotors.
Collapse
Affiliation(s)
- Karolina Olszewska
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology Piotrowo, 3, 60-965, Poznań, Poland
| | - Adam Mizera
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Paweł Ławniczak
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Anna Kamińska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Rosa Santillan
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Maricela Morales-Chamorro
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Ma Eugenia Ochoa
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Andrzej Łapiński
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Izabella Jastrzebska
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1 K, 15-254, Białystok, Poland
| | - Tomasz Runka
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology Piotrowo, 3, 60-965, Poznań, Poland
| |
Collapse
|
2
|
Michalak M, Bisek B, Nowacki M, Górecki M. Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[ b, f][1,5]diazocines. J Org Chem 2021; 86:8955-8969. [PMID: 34161097 PMCID: PMC8279491 DOI: 10.1021/acs.joc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A novel method for
the synthesis of epoxydibenzo[b,f][1,5]diazocines exhibiting a V-shaped molecular
architecture is reported. The unique approach is based on unprecedented
base-catalyzed, solvent-free autocondensation and cross-condensation
of fluorinated o-aminophenones. The structure of
the newly synthesized diazocines was confirmed independently by X-ray
analysis and chiroptical methods. The rigidity of the diazocine scaffold
allowed for the separation of the racemate into single enantiomers
that proved to be thermally stable up to 140 °C. Furthermore,
the inertness of the diazocine scaffold was demonstrated by performing
a series of typical transformations, including transition metal-catalyzed
reactions, proceeding without affecting the bis-hemiaminal subunit.
Collapse
Affiliation(s)
- Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Bartosz Bisek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Nowacki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|