1
|
Zhou Q, Lei P, Cheng S, Wang H, Dong W, Pan X. Recent progress in magnetic polydopamine composites for pollutant removal in wastewater treatment. Int J Biol Macromol 2024; 262:130023. [PMID: 38340929 DOI: 10.1016/j.ijbiomac.2024.130023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.
Collapse
Affiliation(s)
- Qinglin Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Pengli Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
2
|
He Z, Guo Y, Chen J, Luo H, Liu X, Zhang X, Sun Y, Ge D, Ye S, Shi W. Unsaturated phospholipid modified FeOCl nanosheets for enhancing tumor ferroptosis. J Mater Chem B 2023; 11:1891-1903. [PMID: 36744515 DOI: 10.1039/d2tb01854c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation play key roles in ferroptosis, which has been an attractive strategy to kill tumor cells. However, the rapid annihilation of hydroxyl radicals (˙OH) produced from the Fenton reaction has become a major obstacle in inducing lipid peroxidation in cells. In this study, we develop a nano-delivery system of unsaturated phospholipid (Lip) and polyacrylic acid (PAA) functionalized FeOCl nanosheets (FeOCl@PAA-Lip). In this system, the ˙OH radicals produced from the Fenton reaction between FeOCl nanosheets and endogenous H2O2 of tumor cells attack Lip on the nanosheets in situ to initiate the lipid peroxidation chain reaction, which not only realizes free radical conversion but also leads to the amplification of ROS and lipid peroxides, thus enhancing tumor ferroptosis. The in vitro and in vivo results confirmed that FeOCl@PAA-Lip nanosheets exhibited specific tumor cell-killing effects, good biocompatibility, long circulation time, low side effects, high tumor targeting and an excellent tumor inhibition rate (73%). The Lip functionalization strategy offers a paradigm of enhancing ferroptosis treatment by conversion of ˙OH/phospholipid radicals/lipid peroxyl radicals and strengthening lipid peroxidation.
Collapse
Affiliation(s)
- Zi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yijun Guo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Jinzhu Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Huiling Luo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Shefang Ye
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
4
|
Achadu OJ, Nwaji N, Lee D, Lee J, Akinoglu EM, Giersig M, Park EY. 3D hierarchically porous magnetic molybdenum trioxide@gold nanospheres as a nanogap-enhanced Raman scattering biosensor for SARS-CoV-2. NANOSCALE ADVANCES 2022; 4:871-883. [PMID: 36131829 PMCID: PMC9419194 DOI: 10.1039/d1na00746g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 05/03/2023]
Abstract
The global pandemic of COVID-19 is an example of how quickly a disease-causing virus can take root and threaten our civilization. Nowadays, ultrasensitive and rapid detection of contagious pathogens is in high demand. Here, we present a novel hierarchically porous 3-dimensional magnetic molybdenum trioxide-polydopamine-gold functionalized nanosphere (3D mag-MoO3-PDA@Au NS) composed of plasmonic, semiconductor, and magnetic nanoparticles as a multifunctional nanosculptured hybrid. Based on the synthesized 3D mag-MoO3-PDA@Au NS, a universal "plug and play" biosensor for pathogens is proposed. Specifically, a magnetically-induced nanogap-enhanced Raman scattering (MINERS) detection platform was developed using the 3D nanostructure. Through a magnetic actuation process, the MINERS system overcomes Raman signal stability and reproducibility challenges for the ultrasensitive detection of SARS-CoV-2 spike protein over a wide dynamic range up to a detection limit of 10-15 g mL-1. The proposed MINERS platform will facilitate the broader use of Raman spectroscopy as a powerful analytical detection tool in diverse fields.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- International Institute for Nanocomposites Manufacturing, WMG, University of Warwick CV4 7AL Coventry UK
| | - Njemuwa Nwaji
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Dongkyu Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Jaebeom Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Eser M Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Michael Giersig
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
- Institute of Fundamental Technological Research, Polish Academy of Sciences 02-106 Warsaw Poland
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|