1
|
Balanikas E, Bianconi T, Mancini P, Tiwari NJ, Sheokand M, Misra R, Carlotti B, Vauthey E. Controlling the spatial distribution of electronic excitation in asymmetric D-A-D' and symmetric D'-A-D-A-D' electron donor-acceptor molecules. Chem Sci 2025; 16:8443-8453. [PMID: 40225179 PMCID: PMC11987036 DOI: 10.1039/d5sc01257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Understanding how electronic energy is funnelled towards a specific location in a large conjugated molecule is of primary importance for the development of a site-specific photochemistry. To this end, we investigate here how electronic excitation redistributes spatially in a series of electron donor-acceptor (D-A) molecules containing two different donors, D and D', and organised in both linear D-A-D' and symmetric double-branch D'-A-D-A-D' geometries. Using transient IR absorption spectroscopy to probe the alkyne spacers, we show that for both types of systems in non-polar solvents, excitation remains delocalised over the whole molecule. In polar media, charge-transfer (CT) exciton in the linear D-A-D' systems localises rapidly at the end with the strongest donor. For the double-branch systems, excited-state symmetry breaking occurs and the CT exciton localises at the end of one of the two branches, even if the D' terminal donor is not the strongest one. This unexpected behaviour is explained by considering that the energy of a CT state depends not only on the electron donating and withdrawing properties of the donor and acceptor constituents, but also on the solvation energy. This study demonstrates the possibility to control the location of CT excitons in large conjugated systems by varying the nature of the donors and acceptors, the distance between them as well as the environment.
Collapse
Affiliation(s)
- Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet CH-1211 Geneva 4 Switzerland
| | - Tommaso Bianconi
- Department of Chemistry, Biology and Biotechnology, University of Perugia via elce di sotto 8 06123 Perugia Italy
| | - Pietro Mancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia via elce di sotto 8 06123 Perugia Italy
| | - Nikhil Ji Tiwari
- Department of Chemistry, Indian Institute of Technology Indore 453552 India
| | - Manju Sheokand
- Department of Chemistry, Indian Institute of Technology Indore 453552 India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore 453552 India
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia via elce di sotto 8 06123 Perugia Italy
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet CH-1211 Geneva 4 Switzerland
| |
Collapse
|
2
|
Szymański B, Sahoo SR, Vakuliuk O, Valiev R, Ramazanov R, Łaski P, Jarzembska KN, Kamiński R, Teimouri MB, Baryshnikov G, Gryko DT. Shedding new light on quadrupolar 1,4-dihydropyrrolo[3,2- b]pyrroles: impact of electron-deficient scaffolds over emission. Chem Sci 2025; 16:2170-2179. [PMID: 39664808 PMCID: PMC11629117 DOI: 10.1039/d4sc07275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024] Open
Abstract
In this work, we disclose a series of seven quadrupolar centrosymmetric 1,4-dihydropyrrolo[3,2-b]pyrroles (DHPPs) linked to the two peripheral, strongly electron-accepting heterocycles such as benzoxadiazole, benzothiadiazole and benzoselenadiazole. This represents the first study probing the influence of electron-deficient heterocycles, rather that small electron-withdrawing substituents, on photophysics of DHPPs. These new acceptor-donor-acceptor hybrid dyes exhibit an appreciable combination of photophysical properties including absorption maxima in the range of 470-620 nm, and emission in the range of 500-720 nm with fluorescence quantum yields reaching 0.88. We discovered that the presence of two 7-nitro-benzoxadiazolyl substituents at positions 2 and 5 of DHPP core, evokes a strong fluorescence in non-polar solvents shifted to 639 nm. This is the most bathochromically shifted emission for quadrupolar, centrosymmetric chromophore bearing exclusively biaryl linkages. Interestingly, 1,2,4,5-tetraaryl-1,4-dihydropyrrolo[3,2-b]pyrrole (TAPP) possessing 4-benzothiadiazolyl groups is strongly emitting in the crystalline state (fluorescence quantum yield = 0.43). The combined photophysical and crystallographic studies point towards existence of intermolecular hydrogen bonds which modify the dihedral angles between the donor and acceptor moieties as a primary reason for this strong emission. Small structural alteration via the replacement of two 2,1,3-benzoxadiazole scaffolds with 2,1,3-benzoxadiazole-2-oxide moieties causes >103 decrease in the fluorescence intensity. Computational studies point out to strong charge transfer originating from exceptionally large dihedral angles as the pivotal reason of this phenomenon. Although internal conversion originating from the charge-transfer state is the prevailing non-radiative deactivation mechanism, intersystem crossing also plays a role. The rational design of DHPPs that enables modulation of emission will advance their applicability.
Collapse
Affiliation(s)
- Bartosz Szymański
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Smruti Ranjan Sahoo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University SE-60174 Norrköping Sweden
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Rashid Valiev
- Department of Chemistry, University of Helsinki FI-00014 Helsinki Finland
| | - Ruslan Ramazanov
- Department of Chemistry, University of Helsinki FI-00014 Helsinki Finland
| | - Piotr Łaski
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | | | - Radosław Kamiński
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Mohammad B Teimouri
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
- Faculty of Chemistry, Kharazmi University 15719-14911 Tehran Iran
| | - Glib Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University SE-60174 Norrköping Sweden
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| |
Collapse
|
3
|
Ivanov AI. Electric dipole moment of excited octupolar molecules: Potential qubit implementation. J Chem Phys 2025; 162:024303. [PMID: 39774884 DOI: 10.1063/5.0243375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
The first excited state of conjugated donor-acceptor molecules of C3 symmetry (octupolar molecules) is doubly degenerate. Such a doublet is known to be isomorphic to a spin 1/2. It is shown that a large electric dipole moment is associated with this spin. Since the mean value of the electric dipole moment of an octupolar molecule is a measure of the symmetry breaking charge transfer, a dimensionless dipole moment called the dissymmetry vector is introduced. The dissymmetry vector operator is constructed. A linear tensor connection between this operator and the Pauli matrices is found. The tensor character is due to the two-dimensionality of the dipole moment. The dipole moment can rotate freely in the plane of the molecule as long as the C3 symmetry is maintained. The rotation is associated only with the rearrangement of the electronic subsystem of the molecule and does not affect the spatial position of the nuclei. This opens up the possibility of changing the dipole moment state on a subpicosecond time scale. The Jahn-Teller effect on the dissymmetry vector is considered in detail. It is shown that the dissymmetry vector can be controlled using electric fields in the same way as three-dimensional spin if both static and alternating electric fields are in the plane of the molecule. The conducted studies indicate that the dipole moment of excited octupolar molecules is a promising candidate for the physical implementation of a qubit.
Collapse
Affiliation(s)
- Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
4
|
Govind C, Balanikas E, Sanil G, Gryko DT, Vauthey E. Structural and solvent modulation of symmetry-breaking charge-transfer pathways in molecular triads. Chem Sci 2024:d4sc05419a. [PMID: 39371465 PMCID: PMC11445701 DOI: 10.1039/d4sc05419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Whereas the photoinduced charge-transfer properties of electron donor-acceptor dyads are now well understood, those of symmetric conjugated architectures containing several identical donor-acceptor branches have started to be scrutinised much more recently. Here, we report on our investigation of the charge-transfer dynamics of a series of formally centrosymmetric triads consisting of a quadrupolar dihydropyrrolopyrrole core substituted with two identical diphenylethynyl lateral branches. Using a combination of time-resolved electronic and vibrational spectroscopies, we show that these molecules exhibit rich excited-state dynamics, which includes three different types of symmetry-breaking charge-transfer processes depending on the nature of the end substituents on the core and branches as well as on the solvent: (i) excited-state symmetry breaking within the core; (ii) charge transfer from the core to one of the two branches; (iii) charge transfer between the two branches. This investigation illustrates how the excited-state properties of symmetric conjugated molecules, including the nature and location of the exciton, can be controlled by fine tuning structural as well as environmental parameters.
Collapse
Affiliation(s)
- Chinju Govind
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet CH-1211 Geneva 4 Switzerland
| | - Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet CH-1211 Geneva 4 Switzerland
| | - Gana Sanil
- Institute of Organic Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet CH-1211 Geneva 4 Switzerland
| |
Collapse
|
5
|
Dereka B, Maroli N, Poronik YM, Gryko DT, Kananenka AA. Excited-state symmetry breaking is an ultrasensitive tool for probing microscopic electric fields. Chem Sci 2024:d4sc04797d. [PMID: 39220161 PMCID: PMC11350400 DOI: 10.1039/d4sc04797d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Microscopic electric fields are increasingly found to play a pivotal role in catalysis of enzymatic and chemical reactions. Currently, the vibrational Stark effect is the main experimental method used to measure them. Here, we demonstrate how excited-state symmetry breaking can serve as a much more sensitive tool to assess these fields. Using transient infrared spectroscopy on a quadrupolar probe equipped with nitrile groups we demonstrate both its superior sensitivity and that it does not suffer from the notorious hydrogen-bond induced upshift of the C[triple bond, length as m-dash]N stretch frequency. In combination with conventional ground-state infrared absorption, excited-state symmetry breaking can be used to disentangle even weak specific hydrogen bond interactions from general field effects. We showcase this capability with the example of weak C-H hydrogen bonds in polar aprotic solvents. Additionally, we reveal for the first time symmetry breaking driven not by solvent but by the entropy of the pendant side chains of the chromophore. Our findings not only enhance our understanding of symmetry-breaking charge-transfer phenomena but pave the way toward using them in electric field sensing modality.
Collapse
Affiliation(s)
- Bogdan Dereka
- Department of Chemistry, University of Zurich CH-8057 Zurich Switzerland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware Newark Delaware 19716 USA
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
6
|
Balanikas E, Reymond-Joubin M, Vauthey E. Excited-State Symmetry Breaking in Solvent Mixtures. J Phys Chem Lett 2024; 15:2447-2452. [PMID: 38407054 DOI: 10.1021/acs.jpclett.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A large number of multipolar dyes undergo excited-state symmetry breaking (ESSB) in polar media. During this process, electronic excitation, initially distributed evenly over the molecule, localizes, at least partially, on one donor-acceptor branch. To resolve its initial stage, ESSB is investigated with a donor-acceptor-donor dye in binary mixtures of nonpolar and polar solvents using time-resolved infrared absorption spectroscopy. The presence of a few polar molecules around the dye is sufficient to initiate ESSB. Although the extent of asymmetry in a mixture is close to that in a pure solvent of similar polarity, the dynamics are slower and involve translational diffusion. However, preferential solvation in the mixtures leads to a larger local polarity. Furthermore, inhomogeneous broadening of the S1 ← S0 absorption band of the dye is observed in the mixtures, allowing for a photoselection of solutes with different local environments and ESSB dynamics.
Collapse
Affiliation(s)
- Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Maric Reymond-Joubin
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
7
|
Mikhailova TV, Ivanov AI. Controlling the symmetry breaking charge transfer extent in excited quadrupolar molecules by tuning the locally excited state. J Chem Phys 2024; 160:054302. [PMID: 38310475 DOI: 10.1063/5.0193532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
The effect of a locally excited state on charge transfer symmetry breaking (SBCT) in excited quadrupolar molecules in solutions has been studied. The interaction of a locally excited state and two zwitterionic states is found to either increase or decrease the degree of SBCT depending on the molecular parameters. A strategy on how to adjust the molecular parameters to control the extent of SBCT is presented. The influence of level degeneracy on SBCT is identified and discussed in detail. The level degeneracy is shown to lead to the existence of a hidden dipole moment in excited quadrupolar molecules. Its manifestations in SBCT are analyzed. The main conclusions are consistent with the available experimental data.
Collapse
Affiliation(s)
| | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
8
|
Verma P, Tasior M, Roy P, Meech SR, Gryko DT, Vauthey E. Excited-state symmetry breaking in quadrupolar pull-push-pull molecules: dicyanovinyl vs. cyanophenyl acceptors. Phys Chem Chem Phys 2023; 25:22689-22699. [PMID: 37602791 PMCID: PMC10467566 DOI: 10.1039/d3cp02810k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
A significant number of quadrupolar dyes behave as their dipolar analogues when photoexcited in polar environments. This is due to the occurrence of excited-state symmetry breaking (ES-SB), upon which the electronic excitation, initially distributed over the whole molecule, localises preferentially on one side. Here, we investigate the ES-SB properties of two A-D-A dyes, consisting of a pyrrolo-pyrrole donor (D) and either cyanophenyl or dicyanovinyl acceptors (A). For this, we use time-resolved vibrational spectroscopy, comparing IR absorption and femtosecond stimulated Raman spectroscopies. Although dicyanovinyl is a stronger electron-withdrawing group, ES-SB is not observed with the dicyanovinyl-based dye even in highly polar media, whereas it already takes place in weakly polar solvents with dyes containing cyanophenyl accepting groups. This difference is attributed to the large electronic coupling between the D-A branches in the former dye, whose loss upon symmetry breaking cannot be counterbalanced by a gain in solvation energy. Comparison with analogues of the cyanophenyl-based dye containing different spacers reveals that interbranch coupling does not so much depend on the distance between the D-A subunits than on the nature of the spacer. We show that transient Raman spectra probe different modes of these centrosymmetric molecules but are consistent with the transient IR data. However, lifetime broadening of the Raman bands, probably due to the resonance enhancement, may limit the application of this technique for monitoring ES-SB.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
9
|
Ivanov AI. Modeling the Effect of H-Bonding of Excited Quadrupolar Molecules with a Solvent on Charge Transfer Symmetry Breaking. J Phys Chem B 2022; 126:9038-9046. [DOI: 10.1021/acs.jpcb.2c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anatoly I. Ivanov
- Volgograd State University, University Avenue 100, Volgograd400062, Russia
| |
Collapse
|
10
|
Antipov IF, Ivanov AI. Effect of Symmetry Breaking in Excited Quadrupole Molecules on Transition Dipole Moment. J Phys Chem B 2021; 125:13778-13788. [PMID: 34894694 DOI: 10.1021/acs.jpcb.1c08666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Manifestations of charge transfer symmetry breaking in excited quadrupolar molecules in optical spectra are theoretically studied. The molecules are supposed to have π-conjugated structures of A-π-D-π-A or D-π-A-π-D character, where electron acceptors (A) or electron donors (D) are identical. A theory describing the effect of symmetry breaking and solvent fluctuations on the dipole moments of optical transitions associated with absorption by a quadrupolar dye in the ground and excited states, as well as fluorescence, is developed. Simple equations describing the influence of the symmetry breaking extent on the transition dipole moments are found. The orientational solvent fluctuations are predicted to decrease the transition dipole moment of the ground state absorption. The decrease does not exceed 10%. A considerably larger effect of symmetry breaking and the solvent fluctuations on the emission dipole moment is found. Equations describing dependencies of the transition dipole moment associated with excited state absorption on the solvent polarity and the parameters of the dye are derived. The scale of the changes in the transition dipole moments due to symmetry breaking in the excited state are determined. The influence of the polar solvent fluctuations is also taken into account. The theoretical findings are shown to be consistent with the available experimental data.
Collapse
Affiliation(s)
- Ivan F Antipov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
11
|
Sebastian E, Hariharan M. Null Exciton-Coupled Chromophoric Dimer Exhibits Symmetry-Breaking Charge Separation. J Am Chem Soc 2021; 143:13769-13781. [PMID: 34370481 DOI: 10.1021/jacs.1c05793] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A comprehensive understanding of the structure-property relationships in multichromophoric architectures has pushed the limits for developing robust photosynthetic mimics and molecular photovoltaics. The elusive phenomenon of null exciton splitting has gathered immense attention in recent years owing to the occurrence in unique chromophoric architectures and consequent emergent properties. Herein, we unveil the hitherto unobserved null exciton coupling assisted highly efficient photoinduced symmetry-breaking charge separation (SB-CS) in a Greek cross (+)-oriented spiro-conjugated perylenediimide dimer (Sp-PDI2). Quantum chemical calculations have rationalized the infrequent manifestation of null exciton coupling behavior in Sp-PDI2. Negligible contribution of long-range Coulombic and short-range charge-transfer mediated coupling renders a monomer-like spectroscopic signature for Sp-PDI2 in toluene. The Greek cross (+)-arranged Sp-PDI2 possesses a selective hole-transfer coupling, facilitating the ultrafast dissociation of null excitons and evolution of the charge-separated state in polar solvents. Radical cationic and anionic spectroscopic signatures were characterized by employing femtosecond transient absorption spectroscopy. The substantial hole transfer electronic coupling and lower activation energy barrier of Sp-PDI2 accelerated the charge separation rate. The rate of charge recombination (CR) markedly decelerated due to falling into the inverted region of the Marcus parabola, where the driving force of CR is larger than the total reorganization energy for CR. Hence, the ratio of the rates for SB-CS over CR of Sp-PDI2 exhibited an unprecedently high value of 2647 in acetonitrile. The current study provides impeccable evidence for the role of selective charge filtering in governing efficient SB-CS and thereby novel insights towards the design of biomimics and advanced functional materials.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
12
|
Abstract
Excited-state symmetry breaking (ES-SB) is common to a large number of multibranched electron donor-acceptor (DA) molecules in polar environments. During this process, the electronic excitation, originally evenly distributed over the molecule, localizes, at least partially, on one branch. Due to the absence of an unambiguous spectroscopic signature in the UV-vis region, electronic transient absorption (TA) has not been the method of choice for real-time observation of this phenomenon. Herein, we demonstrate that the Laporte rule, which states that one-photon transitions conserving parity are forbidden in centrosymmetric molecules, provides such clear signature of ES-SB in electronic TA spectroscopy. Using a dicyanoanthracene-based D-A-D dye, we show that transitions from the S1 state of this molecule, which are initially Laporte forbidden, become allowed upon ES-SB. This leads to the rise of new TA bands, whose intensity provides a direct measure of the extent of asymmetry in the excited state.
Collapse
Affiliation(s)
- Zoltán Szakács
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|