1
|
Chhetri KB. Insights on the binding mechanisms and structural dynamics of protamine-DNA interaction. Biophys Rev 2025. [DOI: 10.1007/s12551-025-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
|
2
|
Chhetri KB. DNA compaction and chromatin dynamics: The role of cationic polyamines and proteins. Biochem Biophys Res Commun 2025; 756:151538. [PMID: 40058308 DOI: 10.1016/j.bbrc.2025.151538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
DNA compaction by polyaminic cations and proteins involves reversible condensation mechanisms. Polyamines, metal cations, and histone proteins are utilized to compact lengthy DNA chains. Chromatin organization begins with nucleosomal arrays, further compacted by linker histones. Various factors such as DNA methylation, histone modifications, and non-histone proteins influence chromatin structure. Posttranslational modifications like acetylation and methylation alter nucleosome shape. Polyamines induce significant phase transitions, while cationic surfactants drive conformational changes in DNA. In sperm cells, protamines replace histones, leading to dense DNA packing. Despite advances, unresolved aspects persist in understanding the dynamic regulation of chromatin structure, highlighting avenues for future research. An overview of current knowledge and cutting-edge discoveries in the field of reversible DNA compaction induced by charged polyamines and histone proteins is presented in this work, highlighting emerging mechanisms of chromatin compaction and their relevance to cellular function, disease, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal.
| |
Collapse
|
3
|
Leyden MR, Michalik P, Baruffaldi L, Mahmood S, Kalani L, Hunt DF, Eirin-Lopez JM, Andrade MCB, Shabanowitz J, Ausió J. The protamines of the spider Steatoda sp. provide an example of liquid-liquid phase separation chromatin transitions during spermiogenesis. Development 2024; 151:dev203134. [PMID: 39465422 DOI: 10.1242/dev.203134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Although there is extensive information about sperm nuclear basic proteins (SNBP) in vertebrates, there is, by comparison, very little information in Arthropoda. This study aims to contribute to filling this gap by analyzing these proteins in the sperm of the noble false widow spider Steatoda nobilis (order Araneae, family Theridiidae). To this end, we have developed a protein extraction method that allows the extraction of both cysteine-containing and non-cysteine-containing protamines that is suitable for the preparation and analysis of SNBPs from samples in which the amount of starting tissue material is limited. We carried out top-down mass spectrometry sequencing and molecular phylogenetic analyses to characterize the protamines of S. nobilis and other spiders. We also used electron microscopy to analyze the chromatin organization of the Steatoda sperm and we found it to exhibit liquid-liquid phase spinodal decomposition during the late stages of spermiogenesis. These experiments further our knowledge on the distribution of SNBPs within the animal kingdom and provide additional support for a proposed evolutionary origin of many protamines from a histone H1 (H5) replication-independent precursor.
Collapse
Affiliation(s)
- Melissa R Leyden
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Peter Michalik
- Zoologisches Institut und Museum, Universität Greifswald, D-17489 Greifswald, Germany
| | - Luciana Baruffaldi
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Susheen Mahmood
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jose Maria Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL 33181, USA
| | - Maydianne C B Andrade
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
4
|
Sanovec O, Frolikova M, Kraus V, Vondrakova J, Qasemi M, Spevakova D, Simonik O, Moritz L, Caswell DL, Liska F, Ded L, Cerny J, Avidor-Reiss T, Hammoud SS, Schorle H, Postlerova P, Steger K, Komrskova K. Protamine 2 deficiency results in Septin 12 abnormalities. Front Cell Dev Biol 2024; 12:1447630. [PMID: 39524225 PMCID: PMC11543461 DOI: 10.3389/fcell.2024.1447630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mis-localized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/2/3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 proteins or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone-protamine 1/2 ratio, modified levels of cytoskeletal proteins and we detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions. In conclusion, our findings present potential interaction between Septin 12 and Protamine 2 or Lamin B2/3 and describe a new connection between their expression and localization, contributing likely to low sperm motility and morphological abnormalities.
Collapse
Affiliation(s)
- Ondrej Sanovec
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Veronika Kraus
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Jana Vondrakova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Maryam Qasemi
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Daniela Spevakova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Lindsay Moritz
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Drew Lewis Caswell
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, United States
| | - Frantisek Liska
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Jiri Cerny
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, United States
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Klaus Steger
- Clinic of Urology, Paediatric Urology and Andrology, Molecular Andrology, Justus Liebig University of Giessen, Giessen, Germany
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Leyden MR, Michalik P, Baruffaldi L, Mahmood S, Kalani L, Hunt DF, Eirin-Lopez JM, Andrade MC, Shabanowitz J, Ausió J. The protamines of the noble false widow spider Steatoda nobilis provide an example of liquid-liquid phase separation chromatin transitions during spermiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597381. [PMID: 38895387 PMCID: PMC11185589 DOI: 10.1101/2024.06.04.597381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
While there is extensive information about sperm nuclear basic proteins (SNBP) in vertebrates, there is very little information about Arthropoda by comparison. This paper aims to contribute to filling this gap by analyzing these proteins in the sperm of the noble false widow spider Steatoda nobilis (Order Araneae, Family Theridiidae). To this end, we have developed a protein extraction method that allows the extraction of cysteine-containing protamines suitable for the preparation and analysis of SNBPs from samples where the amount of starting tissue material is limited. We carried out top-down mass spectrometry sequencing and molecular phylogenetic analyses to characterize the protamines of S. nobilis and other spiders. We also used electron microscopy to analyze the chromatin organization of the sperm, and we found it to exhibit liquid-liquid phase spinodal decomposition during the late stages of spermiogenesis. These studies further our knowledge of the distribution of SNBPs within the animal kingdom and provide additional support for a proposed evolutionary origin of many protamines from a histone H1 (H5) replication-independent precursor.
Collapse
Affiliation(s)
- Melissa R. Leyden
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Peter Michalik
- Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| | - Luciana Baruffaldi
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Susheen Mahmood
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 2Y2, Canada
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jose Maria Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
| | - Maydianne C.B. Andrade
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 2Y2, Canada
| |
Collapse
|
6
|
Sanovec O, Frolikova M, Kraus V, Vondrakova J, Qasemi M, Spevakova D, Simonik O, Moritz L, Caswell DL, Liska F, Ded L, Cerny J, Avidor-Reiss T, Hammoud SS, Schorle H, Postlerova P, Steger K, Komrskova K. Protamine 2 Deficiency Results In Septin 12 Abnormalities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596175. [PMID: 38854089 PMCID: PMC11160614 DOI: 10.1101/2024.05.28.596175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mislocalized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/B2/B3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 protein or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone- protamine 1/2 ratio and modified levels of cytoskeletal proteins. We detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions, which was not true for healthy normozoospermic men. In conclusion, our findings expand the current knowledge regarding the connection between Protamine 2 and Septin 12 expression and localization, resulting in low sperm motility and morphological abnormalities.
Collapse
|
7
|
Chhetri KB, Jang YH, Lansac Y, Maiti PK. DNA groove preference shift upon phosphorylation of a protamine-like cationic peptide. Phys Chem Chem Phys 2023; 25:31335-31345. [PMID: 37960891 DOI: 10.1039/d3cp03803c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protamines, arginine-rich DNA-binding proteins, are responsible for chromatin compaction in sperm cells, but their DNA groove preference, major or minor, is not clearly identified. We herein study the DNA groove preference of a short protamine-like cationic peptide before and after phosphorylation, using all-atom molecular dynamics and umbrella sampling simulations. According to various thermodynamic and structural analyses, a peptide in its non-phosphorylated native state prefers the minor groove over the major groove, but phosphorylation of the peptide bound to the minor groove not only reduces its binding affinity but also brings a serious deformation of the minor groove, eliminating the minor-groove preference. As protamines are heavily phosphorylated before binding to DNA, we expect that the structurally disordered phosphorylated protamines would prefer major grooves to enter into DNA during spermatogenesis.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, 91405 Orsay, France
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, 91405 Orsay, France
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
8
|
Saurabh S, Nadendla K, Purohit SS, Sivakumar PM, Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS OMEGA 2023; 8:9729-9747. [PMID: 36969402 PMCID: PMC10034788 DOI: 10.1021/acsomega.2c07708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.
Collapse
Affiliation(s)
- Suman Saurabh
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Karthik Nadendla
- Center
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield
Road, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Shubh Sanket Purohit
- Department
of Clinical Haematology, Sahyadri Superspeciality
Hospital, Pune, Maharashtra 411038, India
| | - Ponnurengam Malliappan Sivakumar
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of
Engineering and Natural Sciences, Molecular Biology, Genetics and
Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
9
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
10
|
Chhetri KB, Jang YH, Lansac Y, Maiti PK. Effect of phosphorylation of protamine-like cationic peptide on the binding affinity to DNA. Biophys J 2022; 121:4830-4839. [PMID: 36168289 PMCID: PMC9808561 DOI: 10.1016/j.bpj.2022.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Protamines are more arginine-rich and more basic than histones and are responsible for providing a highly compacted shape to the sperm heads in the testis. Phosphorylation and dephosphorylation are two events that occur in the late phase of spermatogenesis before the maturation of sperms. In this work, we have studied the effect of phosphorylation of protamine-like cationic peptides using all-atom molecular dynamics simulations. Through thermodynamic analyses, we found that phosphorylation reduces the binding efficiency of such cationic peptides on DNA duplexes. Peptide phosphorylation leads to a less efficient DNA condensation, due to a competition between DNA-peptide and peptide-peptide interactions. We hypothesize that the decrease of peptide bonds between DNA together with peptide self-assembly might allow an optimal re-organization of chromatin and an efficient condensation through subsequent peptide dephosphorylation. Based on the globular and compact conformations of phosphorylated peptides mediated by arginine-phosphoserine H-bonding, we furthermore postulate that phosphorylated protamines could more easily intrude into chromatin and participate to histone release through disruption of histone-histone and histone-DNA binding during spermatogenesis.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea; GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France; Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, Orsay, France.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
Pant P, Aggarwal L. Assessing the DNA structural integrity via selective annihilation of Watson-Crick hydrogen bonds: Insights from molecular dynamics simulations. Biophys Chem 2022; 282:106758. [DOI: 10.1016/j.bpc.2021.106758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023]
|
12
|
Kasinsky HE, Gowen BE, Ausió J. Spermiogenic chromatin condensation patterning in several hexapods may involve phase separation dynamics by spinodal decomposition or microemulsion inversion (nucleation). Tissue Cell 2021; 73:101648. [PMID: 34537592 DOI: 10.1016/j.tice.2021.101648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
We have examined published transmission electron microscopy (TEM). photomicrographs of chromatin condensation patterning in developing sperm nuclei from five species of entognathous hexapods within the Classes Protura, Collembola, Diplura and five species of ancestral wingless insects in the Orders Archaeognatha and Zygentoma as well as in fifteen species of the winged insects. Each species reproduces by internal fertilization. Spatially quantitative analysis indicates that spermiogenic chromatin condensation patterning in several of these species may be due to spinodal decomposition (SD) or to microemulsion inversion (chromatin-in-nucleoplasm → nucleoplasm-in-chromatin), also known as nucleation (Nc). These are two different dynamic mechanisms of liquid-liquid phase separation (LLPS). They might either occur independently or co-exist during the chromatin condensation associated with insect spermiogenesis. For example, the chromatin condensation pattern such as that observed in transverse sections of developing sperm nuclei from the wingless insect Anurida maritima (Collembola) is: granules → fibers → lamellae (SD) → nucleation (Nc) → condensed nuclei. Similar transitions are also observed in other more recently evolved species within the Class Insecta. From the limited but comprehensive sample of entognathus and ectognathus hexapods analyzed here, it appears that LLPS of sperm chromatin during spermiogenesis has occurred quite pervasively within the subphylum Hexapoda, including insects.
Collapse
Affiliation(s)
- Harold E Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brent E Gowen
- Department of Biology. University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
13
|
Mukherjee A, de Izarra A, Degrouard J, Olive E, Maiti PK, Jang YH, Lansac Y. Protamine-Controlled Reversible DNA Packaging: A Molecular Glue. ACS NANO 2021; 15:13094-13104. [PMID: 34328301 DOI: 10.1021/acsnano.1c02337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Packaging paternal genome into tiny sperm nuclei during spermatogenesis requires 106-fold compaction of DNA, corresponding to a 10-20 times higher compaction than in somatic cells. While such a high level of compaction involves protamine, a small arginine-rich basic protein, the precise mechanism at play is still unclear. Effective pair potential calculations and large-scale molecular dynamics simulations using a simple idealized model incorporating solely electrostatic and steric interactions clearly demonstrate a reversible control on DNA condensates formation by varying the protamine-to-DNA ratio. Microscopic states and condensate structures occurring in semidilute solutions of short DNA fragments are in good agreement with experimental phase diagram and cryoTEM observations. The reversible microscopic mechanisms induced by protamination modulation should provide valuable information to improve a mechanistic understanding of early and intermediate stages of spermatogenesis where an interplay between condensation and liquid-liquid phase separation triggered by protamine expression and post-translational regulation might occur. Moreover, recent vaccines to prevent virus infections and cancers using protamine as a packaging and depackaging agent might be fine-tuned for improved efficiency using a protamination control.
Collapse
Affiliation(s)
- Arnab Mukherjee
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Jeril Degrouard
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| | - Enrick Olive
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
14
|
Naskar S, Maiti PK. Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA models. J Mater Chem B 2021; 9:5102-5113. [PMID: 34127998 DOI: 10.1039/d0tb02970j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The flexibility and stiffness of small DNA molecules play a fundamental role ranging from several biophysical processes to nano-technological applications. Here, we estimate the mechanical properties of short double-stranded DNA (dsDNA) with lengths ranging from 12 base-pairs (bp) to 56 bp, paranemic crossover (PX) DNA and hexagonal DNA nanotubes (DNTs) using two widely used coarse-grained models - Martini and oxDNA. To calculate the persistence length (Lp) and the stretch modulus (γ) of the dsDNA, we incorporate the worm-like chain and elastic rod model, while for the DNTs, we implement our previously developed theoretical framework. We compare and contrast all of the results with previously reported all-atom molecular dynamics (MD) simulations and experimental results. The mechanical properties of dsDNA (Lp ∼ 50 nm, γ ∼ 800-1500 pN), PX DNA (γ ∼ 1600-2000 pN) and DNTs (Lp ∼ 1-10 μm, γ ∼ 6000-8000 pN) estimated using the Martini soft elastic network and oxDNA are in very good agreement with the all-atom MD and experimental values, while the stiff elastic network Martini reproduces values of Lp and γ which are an order of magnitude higher. The high flexibility of small dsDNA is also depicted in our calculations. However, Martini models proved inadequate to capture the salt concentration effects on the mechanical properties with increasing salt molarity. oxDNA captures the salt concentration effect on the small dsDNA mechanics. But it is found to be ineffective for reproducing the salt-dependent mechanical properties of DNTs. Also, unlike Martini, the time evolved PX DNA and DNT structures from the oxDNA models are comparable to the all-atom MD simulated structures. Our findings provide a route to study the mechanical properties of DNA and DNA based nanostructures with increased time and length scales and has a remarkable implication in the context of DNA nanotechnology.
Collapse
Affiliation(s)
- Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|