1
|
Huff JS, Duncan KM, van Galen CJ, Barclay MS, Knowlton WB, Yurke B, Davis PH, Turner DB, Stanley RJ, Pensack RD. High-sensitivity electronic Stark spectrometer featuring a laser-driven light source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:094103. [PMID: 37728421 DOI: 10.1063/5.0153428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
We report developmental details of a high-sensitivity Stark absorption spectrometer featuring a laser-driven light source. The light source exhibits intensity fluctuations of ∼0.3% over timescales ranging from 1 min to 12 h, minimal drift (≤0.1%/h), and very little 1/f noise at frequencies greater than 200 Hz, which are comparable to or better than an arc-driven light source. Additional features of the spectrometer include balanced detection with multiplex sampling, which yielded lower noise in A, and constant wavelength or wavenumber (energy) spectral bandpass modes. We achieve noise amplitudes of ∼7 × 10-4 and ∼6 × 10-6 in measurements of single A and ΔA spectra (with 92 data points) taking ∼7 and ∼19 min, respectively.
Collapse
Affiliation(s)
- J S Huff
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - K M Duncan
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - C J van Galen
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - M S Barclay
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - W B Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - B Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - P H Davis
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, USA
| | - D B Turner
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - R J Stanley
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R D Pensack
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
2
|
Islam A, Kikuchi Y, Iimori T. Electroabsorption and Stark Fluorescence Spectroscopies of Thioflavin T. J Phys Chem A 2023; 127:1436-1444. [PMID: 36740807 DOI: 10.1021/acs.jpca.2c07794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thioflavin T (ThT) is a typical fluorescent marker for detecting the formation of amyloid fibrils, because its fluorescence intensity increases by more than 2 orders of magnitude upon complexation with the fibrils. Strong electrostatic fields on protein surfaces are known to be a significant factor in chemical reactions and biological functions. Therefore, ThT bound to amyloid fibrils must experience strong electric fields. This study employed electroabsorption and Stark fluorescence spectroscopies to clarify the effects of external electric fields on the photophysics of ThT. The absorption spectrum shows two bands ascribed to locally excited (LE) and charge transfer (CT) states. Coupling between the LE and CT states is enhanced in the presence of an external electric field, resulting in fluorescence quenching. The electric field strength of the amyloid fibril surface was inferred from the fluorescence quenching efficiency of ThT.
Collapse
Affiliation(s)
- Ahatashamul Islam
- Department of Sciences and Informatics, Muroran Institute of Technology, Mizumoto-cho 27-1, Muroran, Hokkaido050-8585, Japan
| | - Yudai Kikuchi
- Department of Sciences and Informatics, Muroran Institute of Technology, Mizumoto-cho 27-1, Muroran, Hokkaido050-8585, Japan
| | - Toshifumi Iimori
- Department of Sciences and Informatics, Muroran Institute of Technology, Mizumoto-cho 27-1, Muroran, Hokkaido050-8585, Japan
| |
Collapse
|
3
|
Ding M, Ye Z, Liu L, Wang W, Chen Q, Zhang F, Wang Y, Sjöling Å, Martín-Rodríguez AJ, Hu R, Chen W, Zhou Y. Subinhibitory antibiotic concentrations promote the horizontal transfer of plasmid-borne resistance genes from Klebsiellae pneumoniae to Escherichia coli. Front Microbiol 2022; 13:1017092. [PMID: 36419429 PMCID: PMC9678054 DOI: 10.3389/fmicb.2022.1017092] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2023] Open
Abstract
Horizontal gene transfer plays an important role in the spread of antibiotic resistance, in which plasmid-mediated conjugation transfer is the most important mechanism. While sub-minimal inhibitory concentrations (sub-MIC) of antibiotics could promote conjugation frequency, the mechanism by which sub-MIC levels of antibiotics affect conjugation frequency is not clear. Here, we used Klebsiella pneumoniae SW1780 carrying the multi-drug resistance plasmid pSW1780-KPC as the donor strain, to investigate the effects of sub-MICs of meropenem (MEM), ciprofloxacin (CIP), cefotaxime (CTX), and amikacin (AK) on conjugational transfer of pSW1780-KPC from SW1780 to Escherichia coli J53. Our results showed that the transfer frequencies increased significantly by treating SW1780 strain with sub-MIC levels of MEM, CIP, CTX and AK. Transfer frequencies at sub-MIC conditions in a Galleria mellonella were significantly higher than in vitro. To investigate gene expression and metabolic effects, RT-qPCR and LC-MS-based metabolome sequencing were performed. Transcript levels of T4SS genes virB1, virB2, virB4, virB8, and conjugation-related genes traB, traK, traE, and traL were significantly upregulated by exposure to sub-MICs of MEM, CIP, CTX, and AK. Metabolome sequencing revealed nine differentially regulated metabolites. Our findings are an early warning for a wide assessment of the roles of sub-MIC levels of antibiotics in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Manlin Ding
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zi Ye
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Lu Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Qiao Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Renjing Hu
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|