1
|
Aydin S, Salehi SM, Töpfer K, Meuwly M. SCN as a local probe of protein structural dynamics. J Chem Phys 2024; 161:055101. [PMID: 39092954 DOI: 10.1063/5.0216657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
The dynamics of lysozyme is probed by attaching -SCN to all alanine residues. The one-dimensional infrared spectra exhibit frequency shifts in the position of the maximum absorption of 4 cm-1, which is consistent with experiments in different solvents and indicates moderately strong interactions of the vibrational probe with its environment. Isotopic substitution 12C → 13C leads to a redshift by -47 cm-1, which agrees quantitatively with experiments for CN-substituted copper complexes in solution. The low-frequency, far-infrared part of the protein spectra contains label-specific information in the difference spectra when compared with the wild type protein. Depending on the position of the labels, local structural changes are observed. For example, introducing the -SCN label at Ala129 leads to breaking of the α-helical structure with concomitant change in the far-infrared spectrum. Finally, changes in the local hydration of SCN-labeled alanine residues as a function of time can be related to the reorientation of the label. It is concluded that -SCN is potentially useful for probing protein dynamics, both in the high-frequency part (CN-stretch) and in the far-infrared part of the spectrum.
Collapse
Affiliation(s)
- Sena Aydin
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Seyedeh Maryam Salehi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
2
|
Turan HT, Meuwly M. Local Hydration Control and Functional Implications Through S-Nitrosylation of Proteins: Kirsten Rat Sarcoma Virus (K-RAS) and Hemoglobin (Hb). J Phys Chem B 2023; 127:1526-1539. [PMID: 36757772 DOI: 10.1021/acs.jpcb.2c07371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
S-nitrosylation, the covalent addition of NO to the thiol side chain of cysteine, is an important post-transitional modification (PTM) that can affect the function of proteins. As such, PTMs extend and diversify protein function and thus characterizing consequences of PTM at a molecular level is of great interest. Although PTMs can be detected through various direct/indirect methods, they lack the capability to investigate the modifications with molecular detail. In the present work local and global structural dynamics, their correlation, the hydration structure, and the infrared spectroscopy for WT and S-nitrosylated Kirsten rat sarcoma virus (K-RAS) and hemoglobin (Hb) are characterized from molecular dynamics simulations. It is found that attaching NO to Cys118 in K-RAS rigidifies the protein in the Switch-I region which has functional implications, whereas for Hb, nitrosylation at Cys93 at the β1 chain increases the flexibility of secondary structural motives for Hb in its T0 and R4 conformational substates. Solvent water access decreased by 40% after nitrosylation in K-RAS, similar to Hb for which, however, local hydration of the R4SNO state is yet lower than for T0SNO. Finally, S-nitrosylation leads to detectable peaks for the NO stretch frequency, but the congested IR spectral region will make experimental detection of these bands difficult. Overall, S-nitrosylation in these two proteins is found to influence hydration, protein flexibility, and conformational dynamics which are all eventually involved in protein regulation and function at a molecular level.
Collapse
Affiliation(s)
- Haydar Taylan Turan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Verde C, Giordano D, Bruno S. NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants (Basel) 2023; 12:antiox12020321. [PMID: 36829880 PMCID: PMC9952723 DOI: 10.3390/antiox12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which-among several other reactions-can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scavenging, and transport. The S-nitrosylation of cysteine residues, which also results from the reaction with NO and other nitrogen compounds, is a post-translational modification regulating protein activity, with direct effects on a variety of signaling pathways. Heme proteins are unique in exhibiting this dual reactivity toward NO, with reported examples of cross-reactivity between the heme and cysteine residues within the same protein. In this work, we review the literature on this interplay, with particular emphasis on heme proteins in which heme-dependent nitrosylation has been reported and those for which both heme nitrosylation and S-nitrosylation have been associated with biological functions.
Collapse
Affiliation(s)
- Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
4
|
Käser S, Meuwly M. Transfer learned potential energy surfaces: accurate anharmonic vibrational dynamics and dissociation energies for the formic acid monomer and dimer. Phys Chem Chem Phys 2021; 24:5269-5281. [PMID: 34792523 PMCID: PMC8890265 DOI: 10.1039/d1cp04393e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational dynamics of the formic acid monomer (FAM) and dimer (FAD) is investigated from machine-learned potential energy surfaces at the MP2 (PESMP2) and transfer-learned (PESTL) to the CCSD(T) levels of theory. The normal mode (MAEs of 17.6 and 25.1 cm−1) and second order vibrational perturbation theory (VPT2, MAEs of 6.7 and 17.1 cm−1) frequencies from PESTL for all modes below 2000 cm−1 for FAM and FAD agree favourably with experiment. For the OH stretch mode the experimental frequencies are overestimated by more than 150 cm−1 for both FAM and FAD from normal mode calculations. Conversely, VPT2 calculations on PESTL for FAM reproduce the experimental OH frequency to within 22 cm−1. For FAD the VPT2 calculations find the high-frequency OH stretch at 3011 cm−1, compared with an experimentally reported, broad (∼100 cm−1) absorption band with center frequency estimated at ∼3050 cm−1. In agreement with earlier reports, MD simulations at higher temperature shift the position of the OH-stretch in FAM to the red, consistent with improved sampling of the anharmonic regions of the PES. However, for FAD the OH-stretch shifts to the blue and for temperatures higher than 1000 K the dimer partly or fully dissociates using PESTL. Including zero-point energy corrections from diffusion Monte Carlo simulations for FAM and FAD and corrections due to basis set superposition and completeness errors yields a dissociation energy of D0 = −14.23 ± 0.08 kcal mol−1 compared with an experimentally determined value of −14.22 ± 0.12 kcal mol−1. Neural network based PESs are constructed for formic acid monomer and dimer at the MP2 and transfer learned to the CCSD(T) level of theory. The PESs are used to study the vibrational dynamics and dissociation energy of the molecules.![]()
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
5
|
Mondal P, Cazade PA, Das AK, Bereau T, Meuwly M. Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine Trimer. J Phys Chem B 2021; 125:10928-10938. [PMID: 34559531 DOI: 10.1021/acs.jpcb.1c05423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics and spectroscopy of N-methyl-acetamide (NMA) and trialanine in solution are characterized from molecular dynamics simulations using different energy functions, including a conventional point charge (PC)-based force field, one based on a multipolar (MTP) representation of the electrostatics, and a semiempirical DFT method. For the 1D infrared spectra, the frequency splitting between the two amide-I groups is 10 cm-1 from the PC, 13 cm-1 from the MTP, and 47 cm-1 from self-consistent charge density functional tight-binding (SCC-DFTB) simulations, compared with 25 cm-1 from experiment. The frequency trajectory required for the frequency fluctuation correlation function (FFCF) is determined from individual normal mode (INM) and full normal mode (FNM) analyses of the amide-I vibrations. The spectroscopy, time-zero magnitude of the FFCF C(t = 0), and the static component Δ02 from simulations using MTP and analysis based on FNM are all consistent with experiments for (Ala)3. Contrary to this, for the analysis excluding mode-mode coupling (INM), the FFCF decays to zero too rapidly and for simulations with a PC-based force field, the Δ02 is too small by a factor of two compared with experiments. Simulations with SCC-DFTB agree better with experiment for these observables than those from PC-based simulations. The conformational ensemble sampled from simulations using PCs is consistent with the literature (including PII, β, αR, and αL), whereas that covered by the MTP-based simulations is dominated by PII with some contributions from β and αR. This agrees with and confirms recently reported Bayesian-refined populations based on 1D infrared experiments. FNM analysis together with a MTP representation provides a meaningful model to correctly describe the dynamics of hydrated trialanine.
Collapse
Affiliation(s)
- Padmabati Mondal
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Tristan Bereau
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.,Department of Chemistry, Brown University, Providence/RI 02912, United States
| |
Collapse
|
6
|
Almeida FCL, Sanches K, Pinheiro-Aguiar R, Almeida VS, Caruso IP. Protein Surface Interactions-Theoretical and Experimental Studies. Front Mol Biosci 2021; 8:706002. [PMID: 34307462 PMCID: PMC8298896 DOI: 10.3389/fmolb.2021.706002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
In this review, we briefly describe a theoretical discussion of protein folding, presenting the relative contribution of the hydrophobic effect versus the stabilization of proteins via direct surface forces that sometimes may be overlooked. We present NMR-based studies showing the stability of proteins lacking a hydrophobic core which in turn present hydrophobic surface clusters, such as plant defensins. Protein dynamics measurements by NMR are the key feature to understand these dynamic surface clusters. We contextualize the measurement of protein dynamics by nuclear relaxation and the information available at protein surfaces and water cavities. We also discuss the presence of hydrophobic surface clusters in multidomain proteins and their participation in transient interactions which may regulate the function of these proteins. In the end, we discuss how surface interaction regulates the reactivity of certain protein post-translational modifications, such as S-nitrosation.
Collapse
Affiliation(s)
- Fabio C L Almeida
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karoline Sanches
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Multiuser Center for Biomolecular Innovation (CMIB), Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil
| | - Ramon Pinheiro-Aguiar
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor S Almeida
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Icaro P Caruso
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Multiuser Center for Biomolecular Innovation (CMIB), Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil
| |
Collapse
|
7
|
Abstract
The spectroscopic response of and structural dynamics around all azido-modified alanine residues (AlaN3) in lysozyme are characterized. It is found that AlaN3 is a positionally sensitive probe for the local dynamics, covering a frequency range of ∼15 cm-1 for the center frequency of the line shape. This is consistent with findings from selective replacements of amino acids in PDZ2, which reported a frequency span of ∼10 cm-1 for replacements of Val, Ala, or Glu by azidohomoalanine. For the frequency fluctuation correlation functions, the long-time decay constants τ2 range from ∼1 to ∼10 ps, which compares with experimentally measured correlation times of 3 ps. Attaching azide to alanine residues can yield dynamics that decays to zero on the few ps time scale (i.e., static component Δ0 ∼ 0 ps-1) or to a remaining, static contribution of ∼0.5 ps-1 (corresponding to 2.5 cm-1), depending on the local environment on the 10 ps time scale. The magnitude of the static component correlates qualitatively with the degree of hydration of the spectroscopic probe. Although attaching azide to alanine residues is found to be structurally minimally invasive with respect to the overall protein structure, analysis of the local hydrophobicity indicates that the hydration around the modification site differs for modified and unmodified alanine residues, respectively.
Collapse
Affiliation(s)
- Seyedeh Maryam Salehi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|