1
|
Razaq H, Mehwish N, Xia J, Feng C. NDI based C2-symmetric Chiral Supramolecular Hydrogels Towards Enhanced Conductivity. Chemistry 2024; 30:e202302912. [PMID: 38010920 DOI: 10.1002/chem.202302912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
To comprehend the significance of improved conductive properties in C2-symmetric hydrogels, it is vital to investigate how non-gelating achiral functional group isomers influence the conductivity of such supramolecular hydrogels, whereas understanding the major driving forces behind this regulatory process is first and foremost. Herein, we report a hydrogel system containing tryptophan-conjugated NDI as the backbone (L/D-NTrp), enabling effective supramolecular assembly with the bipyridyl functional group isomers. This co-assembly behavior results in materials with exceptional mechanical properties and high conductivities, surpassing most previously reported C2-symmetrical hydrogels, as well as the ability to form controlled morphologies. Notably, the co-hydrogels displayed an eight-fold increase in mechanical strength, making them more robust and resistant to deformation compared to the original gel. Additionally, all hydrogels exhibited favorable electrical conductivity, with the co-assembled hydrogels showcasing notable performance, making them a promising candidate for use in electronic devices and sensors. This report lays the foundation for further investigation into the properties and potential applications of L/D-NTrp compound in the range of fields, including drug delivery, tissue engineering, and electronics.
Collapse
Affiliation(s)
- Hamaela Razaq
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Nabila Mehwish
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Jingyi Xia
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| |
Collapse
|
2
|
Ge J, Zhang XD, Li ZB, Xue BQ, Bai XL. The investigation of the ultrafast excited state deactivation mechanisms for coumarin 307 in different solvents. RSC Adv 2023; 13:21746-21753. [PMID: 37476044 PMCID: PMC10354496 DOI: 10.1039/d3ra03159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
The intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) processes of coumarin 307 (C307) in different solvents were investigated by performing steady-state/time-resolved transient absorption spectroscopic and steady-state photoluminescence spectroscopic characterizations in combination with time-dependent density functional theoretical calculation (TDDFT). The study unveiled the remarkable influence of solvent polarity and the strength of intermolecular hydrogen bonds formed between the solutes and solvents on the relaxation dynamics of the electronic excited state. Significantly, the emergence of the TICT state was observed in polar solvents, specifically dimethylformamide (DMF) and dimethyl sulfoxidemethanol (DMSO), owing to their inherent polarity as well as the enhanced intermolecular hydrogen bonding interactions. Interestingly, even in a weak polar solvent such as methanol (MeOH), the TICT state was also observed due to the intensified hydrogen bonding effects. Conversely, nonpolar solvents, exemplified by 1,4-dioxane (Diox), resulted in the stabilization of the ICT state due to the augmented N-H⋯O hydrogen bonding interactions. The experimental findings were corroborated by the computational calculations, thus ensuring the reliability of the conclusions drawn. Furthermore, schematic diagrams were presented to illustrate the mechanisms underlying the excited-state deactivation. Overall, this investigation contributes valuable mechanistic insights and provides a comprehensive understanding of the photochemical and photophysical properties exhibited by coumarin dyes.
Collapse
Affiliation(s)
- Jing Ge
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| | - Xue-Dong Zhang
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| | - Zhi-Biao Li
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| | - Bing-Qian Xue
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| | - Xi-Lin Bai
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| |
Collapse
|
3
|
Eckert S, Mascarenhas EJ, Mitzner R, Jay RM, Pietzsch A, Fondell M, Vaz da Cruz V, Föhlisch A. From the Free Ligand to the Transition Metal Complex: FeEDTA - Formation Seen at Ligand K-Edges. Inorg Chem 2022; 61:10321-10328. [PMID: 35764301 PMCID: PMC9277664 DOI: 10.1021/acs.inorgchem.2c00789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Eric J. Mascarenhas
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Rolf Mitzner
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Raphael M. Jay
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Annette Pietzsch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Büchner R, Vaz da Cruz V, Grover N, Charisiadis A, Fondell M, Haverkamp R, Senge MO, Föhlisch A. Fundamental electronic changes upon intersystem crossing in large aromatic photosensitizers: free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin. Phys Chem Chem Phys 2022; 24:7505-7511. [PMID: 35288726 PMCID: PMC8942076 DOI: 10.1039/d1cp05420a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump – N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Qx 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores. The crucial transient states of free-base porphyrins are characterized by time-resolved X-ray absorption spectroscopy unraveling their unusual relaxation pathway.![]()
Collapse
Affiliation(s)
- Robby Büchner
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. .,Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Vinícius Vaz da Cruz
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Asterios Charisiadis
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Robert Haverkamp
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. .,Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Mathias O Senge
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Munchen Garching, Germany.
| | - Alexander Föhlisch
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. .,Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|
5
|
Vaz da Cruz V, Büchner R, Fondell M, Pietzsch A, Eckert S, Föhlisch A. Targeting Individual Tautomers in Equilibrium by Resonant Inelastic X-ray Scattering. J Phys Chem Lett 2022; 13:2459-2466. [PMID: 35266716 PMCID: PMC8935368 DOI: 10.1021/acs.jpclett.1c03453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the π and σ manifolds at the proton-transfer site.
Collapse
Affiliation(s)
- Vinícius Vaz da Cruz
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Robby Büchner
- Universität
Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| | - Mattis Fondell
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Annette Pietzsch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Sebastian Eckert
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| |
Collapse
|
6
|
Eckert S, Vaz da Cruz V, Ochmann M, von Ahnen I, Föhlisch A, Huse N. Breaking the Symmetry of Pyrimidine: Solvent Effects and Core-Excited State Dynamics. J Phys Chem Lett 2021; 12:8637-8643. [PMID: 34472857 PMCID: PMC8436212 DOI: 10.1021/acs.jpclett.1c01865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C2v point group, in an aqueous solution environment, using scattering though its 2a2 resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b2 and 11a1 orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Miguel Ochmann
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Inga von Ahnen
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie,Universität
Potsdam, 14476 Potsdam, Germany
| | - Nils Huse
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|