1
|
Royer CA, Tyers M, Tollis S. Absolute quantification of protein number and dynamics in single cells. Curr Opin Struct Biol 2023; 82:102673. [PMID: 37595512 DOI: 10.1016/j.sbi.2023.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023]
Abstract
Quantitative characterization of protein abundance and interactions in live cells is necessary to understand and predict cellular behavior. The accurate determination of copy number for individual proteins and heterologous complexes in individual cells is critical because small changes in protein dosage, often less than two-fold, can have strong phenotypic consequences. Here, we review the merits and pitfalls of different quantitative fluorescence imaging methods for single-cell determination of protein abundance, localization, interactions, and dynamics. In particular, we discuss how scanning number and brightness (sN&B) and its variation, Raster scanning image correlation spectroscopy (RICS), exploit stochastic noise in small measurement volumes to quantify protein abundance, stoichiometry, and dynamics with high accuracy.
Collapse
Affiliation(s)
- Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY 12180, USA.
| | - Mike Tyers
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210 Finland
| |
Collapse
|
2
|
Chen X, Li Y, Li X, Sun J, Czajkowsky DM, Shao Z. Quasi-equilibrium state based quantification of biological macromolecules in single-molecule localization microscopy. Methods Appl Fluoresc 2023; 11:047001. [PMID: 37647910 DOI: 10.1088/2050-6120/acf546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometryin vitro, it is presently challenging to precisely quantify this propertyin vivo,especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.
Collapse
Affiliation(s)
- Xuecheng Chen
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yaqian Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaowei Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Daniel M Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Vega-Lugo J, da Rocha-Azevedo B, Dasgupta A, Jaqaman K. Analysis of conditional colocalization relationships and hierarchies in three-color microscopy images. J Cell Biol 2022; 221:e202106129. [PMID: 35552363 PMCID: PMC9111757 DOI: 10.1083/jcb.202106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Colocalization analysis of multicolor microscopy images is a cornerstone approach in cell biology. It provides information on the localization of molecules within subcellular compartments and allows the interrogation of known molecular interactions in their cellular context. However, almost all colocalization analyses are designed for two-color images, limiting the type of information that they reveal. Here, we describe an approach, termed "conditional colocalization analysis," for analyzing the colocalization relationships between three molecular entities in three-color microscopy images. Going beyond the question of whether colocalization is present or not, it addresses the question of whether the colocalization between two entities is influenced, positively or negatively, by their colocalization with a third entity. We benchmark the approach and showcase its application to investigate receptor-downstream adaptor colocalization relationships in the context of functionally relevant plasma membrane locations. The software for conditional colocalization analysis is available at https://github.com/kjaqaman/conditionalColoc.
Collapse
Affiliation(s)
- Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Allen D, Weiss LE, Saguy A, Rosenberg M, Iancu O, Matalon O, Lee C, Beider K, Nagler A, Shechtman Y, Hendel A. High-throughput Imaging of CRISPR- and Recombinant Adeno-associated Virus-induced DNA Damage Response in Human Hematopoietic Stem and Progenitor Cells. CRISPR J 2022; 5:80-94. [PMID: 35049367 PMCID: PMC8892977 DOI: 10.1089/crispr.2021.0128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CRISPR-Cas technology has revolutionized gene editing, but concerns remain due to its propensity for off-target interactions. This, combined with genotoxicity related to both CRISPR-Cas9-induced double-strand breaks and transgene delivery, poses a significant liability for clinical genome-editing applications. Current best practice is to optimize genome-editing parameters in preclinical studies. However, quantitative tools that measure off-target interactions and genotoxicity are costly and time-consuming, limiting the practicality of screening large numbers of potential genome-editing reagents and conditions. Here, we show that flow-based imaging facilitates DNA damage characterization of hundreds of human hematopoietic stem and progenitor cells per minute after treatment with CRISPR-Cas9 and recombinant adeno-associated virus serotype 6. With our web-based platform that leverages deep learning for image analysis, we find that greater DNA damage response is observed for guide RNAs with higher genome-editing activity, differentiating even single on-target guide RNAs with different levels of off-target interactions. This work simplifies the characterization and screening process of genome-editing parameters toward enabling safer and more effective gene-therapy applications.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lucien E Weiss
- Department of Biomedical Engineering, Technion, Haifa, Israel.,Department of Engineering Physics, Polytechnique Montreal, Canada
| | - Alon Saguy
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- Arazi School of Computer Science, Interdisciplinary Center, Herzliya, Israel
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katia Beider
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Shechtman
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|