1
|
López-Olivos JC, Álvarez-García A, Garza Ramos G, Huerta L, Molina P, Heredia-Barbero A, Garzón IL, Rodríguez-Zamora P. Metal-ligand interface effect in the chirality transfer from l- and d-glutathione to gold, silver and copper nanoparticles. NANOSCALE ADVANCES 2025; 7:2648-2662. [PMID: 40109506 PMCID: PMC11915459 DOI: 10.1039/d5na00208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Glutathione (GSH) plays a pivotal role in numerous physiological and metabolic processes, including the defense of cells against free radicals and metal toxicity. This tripeptide has been combined with several metal nanoparticles to form a metal-organic interface with unique properties. Here, we implement a one-step, high-yield synthesis method to produce ultrasmall gold, silver, and copper nanoparticles in the intermediate size regime between size-selected nanoclusters and plasmonic nanoparticles to be functionalized with l- and d-glutathione, and study the chirality transfer evidenced by the emergent optical activity observed for each case. The distinctive interactions that take place at the metal-ligand interface for each metal are primarily accountable for establishing the properties of this system. In its protonated state, glutathione anchors only by its thiol group to the surface of gold and copper nanoparticles, whilst for silver nanoparticles an additional binding site through the nitrogen atom of the amide group was indicated by XPS data, albeit with a relatively low proportion. This may contribute to the higher anisotropy factor observed in silver-glutathione nanoparticles. Such slight variations in adsorption configuration generate different chiroptical activity, which has been analyzed per energy region using time-dependent DFT calculations, revealing that metal-to-ligand transitions dominate most of the spectra while ligand-to-ligand are also present in the higher energy regime. Moreover, FTIR and CD data together suggest that those dissimilarities also propitiate particular peptide self-assemblies through intermolecular GSH interactions for each metal, which result in supramolecular structures with properties of beta-sheet arrays. This study offers a parallel examination of the chirality of glutathione-functionalized coinage metals, allowing to establish decisive differences that can be tailored to benefit developments in chiral biomedicine and other diverse applications.
Collapse
Affiliation(s)
- Juan Carlos López-Olivos
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
| | - Andrés Álvarez-García
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
| | - Georgina Garza Ramos
- Facultad de Medicina, Universidad Nacional Autónoma de México Av. Universidad 3000 Ciudad de México 04510 Mexico
| | - Lázaro Huerta
- Instituto de Investigación en Materiales, Universidad Nacional Autónoma de México Circuito Exterior S/N, Circuito de la Investigación Científica 04510 Ciudad de México 04510 Mexico
| | - Paola Molina
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria, Apartado Postal 70-543 C.P. 04510 Mexico
| | - Alejandro Heredia-Barbero
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria, Apartado Postal 70-543 C.P. 04510 Mexico
| | - Ignacio L Garzón
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid E-47011 Valladolid Spain
| | - Penélope Rodríguez-Zamora
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
| |
Collapse
|
2
|
Khatun MA, Sultana F, Saha I, Karmakar P, Gazi HAR, Islam MM, Show B, Mukhopadhyay S. Lentil Extract-Mediated Ag QD Synthesis: Predilection for Albumin Protein Interaction, Antibacterial Activity, and Its Cytotoxicity for Wi-38 and PC-3 Cell Lines. ACS APPLIED BIO MATERIALS 2024; 7:6568-6582. [PMID: 39259615 DOI: 10.1021/acsabm.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent focus has been directed toward semiconductor nanocrystals owing to their unique physicochemical properties. Nevertheless, the synthesis and characterization of quantum dots (QDs) pose considerable challenges, limiting our understanding of their interactions within a biological environment. This research offers valuable insights into the environmentally friendly production of silver quantum dots (Ag QDs) using lentil extract and clarifies their distinct physicochemical characteristics, previously unexplored to our knowledge. These findings pave the path for potential practical applications. The investigation of the phytochemical-assisted Ag QDs' affinity for BSA demonstrated modest interactions, as shown by the enthalpy and entropy changes as well as the associated Gibbs free energy during their association. Steady-state and time-resolved fluorescence spectroscopy further demonstrated a transient effect involving dynamic quenching, predominantly driven by Forster resonance energy transfer. Additionally, the study highlights the potential broad-spectrum antibacterial activity of Ag QDs (<5 nm, a zeta potential of -3.04 mV), exhibiting a remarkable MIC value of 1 μg/mL against Gram-negative bacteria (E. coli) and 1.65 μg/mL against Gram-positive bacteria (S. aureus). They can readily enter cells and tissues due to their minuscule size and the right chemical environment. They cause intracellular pathway disruption, which leads to cell death. This outcome emphasizes the distinctive biocompatibility of the green-synthesized Ag QDs, which has been confirmed by their MTT assay-based cytotoxicity against the PC-3 and Wi-38 cell lines.
Collapse
Affiliation(s)
- Mst Arjina Khatun
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Ishita Saha
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Parimal Karmakar
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Harun Al Rasid Gazi
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Bibhutibhushan Show
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Subrata Mukhopadhyay
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| |
Collapse
|
3
|
Wolff N, Prymak O, Białas N, Schaller T, Loza K, Niemeyer F, Heggen M, Weidenthaler C, Oliveira CLP, Epple M. Conversion of Ultrasmall Glutathione-Coated Silver Nanoparticles during Dispersion in Water into Ultrasmall Silver Sulfide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1449. [PMID: 39269111 PMCID: PMC11397201 DOI: 10.3390/nano14171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ultrasmall silver nanoparticles (2 nm) were prepared by reduction with sodium borohydride (NaBH4) and stabilized by the ligand glutathione (a tripeptide: glycine-cysteine-glutamic acid). NMR spectroscopy and optical spectroscopy (UV and fluorescence) revealed that these particles initially consist of silver nanoparticles and fluorescing silver nanoclusters, both stabilized by glutathione. Over time, the silver nanoclusters disappear and only the silver nanoparticles remain. Furthermore, the capping ligand glutathione eliminates hydrogen sulfide (H2S) from the central cysteine and is released from the nanoparticle surface as tripeptide glycine-dehydroalanine-glutamic acid. Hydrogen sulfide reacts with the silver core to form silver sulfide. After four weeks in dispersion at 4 °C, this process is completed. These processes cannot be detected by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), or differential centrifugal sedimentation (DCS) as these methods cannot resolve the mixture of nanoparticles and nanoclusters or the nature of the nanoparticle core. X-ray photoelectron spectroscopy showed the mostly oxidized state of the silver nanoparticle core, Ag(+I), both in freshly prepared and in aged silver nanoparticles. These results demonstrate that ultrasmall nanoparticles can undergo unnoticed changes that considerably affect their chemical, physical, and biological properties. In particular, freshly prepared ultrasmall silver nanoparticles are much more toxic against cells and bacteria than aged particles because of the presence of the silver clusters.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Nataniel Białas
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
4
|
Gumbiowski N, Barthel J, Loza K, Heggen M, Epple M. Simulated HRTEM images of nanoparticles to train a neural network to classify nanoparticles for crystallinity. NANOSCALE ADVANCES 2024; 6:4196-4206. [PMID: 39114140 PMCID: PMC11302048 DOI: 10.1039/d4na00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Machine learning approaches for image analysis require extensive training datasets for an accurate analysis. This also applies to the automated analysis of electron microscopy data where training data are usually created by manual annotation. Besides nanoparticle shape and size distribution, their internal crystal structure is a major parameter to assess their nature and their physical properties. The automatic classification of ultrasmall gold nanoparticles (1-3 nm) by their crystallinity is possible after training a neural network with simulated HRTEM data. This avoids a human bias and the necessity to manually classify extensive particle sets as training data. The small size of these particles represents a significant challenge with respect to the question of internal crystallinity. The network was able to assign real particles imaged by HRTEM with high accuracy to the classes monocrystalline, polycrystalline, and amorphous after being trained with simulated datasets. The ability to adjust the simulation parameters opens the possibility to extend this procedure to other experimental setups and other types of nanoparticles.
Collapse
Affiliation(s)
- Nina Gumbiowski
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Juri Barthel
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 52428 Jülich Germany
| | - Kateryna Loza
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 52428 Jülich Germany
| | - Matthias Epple
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
5
|
Wolff N, Białas N, Loza K, Heggen M, Schaller T, Niemeyer F, Weidenthaler C, Beuck C, Bayer P, Prymak O, Oliveira CLP, Epple M. Increased Cytotoxicity of Bimetallic Ultrasmall Silver-Platinum Nanoparticles (2 nm) on Cells and Bacteria in Comparison to Silver Nanoparticles of the Same Size. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3702. [PMID: 39124365 PMCID: PMC11313250 DOI: 10.3390/ma17153702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Ultrasmall nanoparticles (diameter 2 nm) of silver, platinum, and bimetallic nanoparticles (molar ratio of Ag:Pt 0:100; 20:80; 50:50; 70:30; 100:0), stabilized by the thiolated ligand glutathione, were prepared and characterized by transmission electron microscopy, differential centrifugal sedimentation, X-ray photoelectron spectroscopy, small-angle X-ray scattering, X-ray powder diffraction, and NMR spectroscopy in aqueous dispersion. Gold nanoparticles of the same size were prepared as control. The particles were fluorescently labeled by conjugation of the dye AlexaFluor-647 via copper-catalyzed azide-alkyne cycloaddition after converting amine groups of glutathione into azide groups. All nanoparticles were well taken up by HeLa cells. The cytotoxicity was assessed with an MTT test on HeLa cells and minimal inhibitory concentration (MIC) tests on the bacteria Escherichia coli and Staphylococcus xylosus. Notably, bimetallic AgPt nanoparticles had a higher cytotoxicity against cells and bacteria than monometallic silver nanoparticles or a physical mixture of silver and platinum nanoparticles. However, the measured release of silver ions from monometallic and bimetallic silver nanoparticles in water was very low despite the ultrasmall size and the associated high specific surface area. This is probably due to the surface protection by a dense layer of thiolated ligand glutathione. Thus, the enhanced cytotoxicity of bimetallic AgPt nanoparticles is caused by the biological environment in cell culture media, together with a polarization of silver by platinum.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (N.W.); (N.B.); (K.L.); (O.P.)
| | - Nataniel Białas
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (N.W.); (N.B.); (K.L.); (O.P.)
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (N.W.); (N.B.); (K.L.); (O.P.)
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (T.S.); (F.N.)
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (T.S.); (F.N.)
| | | | - Christine Beuck
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (C.B.); (P.B.)
| | - Peter Bayer
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (C.B.); (P.B.)
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (N.W.); (N.B.); (K.L.); (O.P.)
| | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (N.W.); (N.B.); (K.L.); (O.P.)
| |
Collapse
|
6
|
Wolff N, Beuck C, Schaller T, Epple M. Possibilities and limitations of solution-state NMR spectroscopy to analyze the ligand shell of ultrasmall metal nanoparticles. NANOSCALE ADVANCES 2024; 6:3285-3298. [PMID: 38933863 PMCID: PMC11197423 DOI: 10.1039/d4na00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Ultrasmall nanoparticles have a diameter between 1 and 3 nm at the border between nanoparticles and large molecules. Usually, their core consists of a metal, and the shell of a capping ligand with sulfur or phosphorus as binding atoms. While the core structure can be probed by electron microscopy, electron and powder diffraction, and single-crystal structure analysis for atom-sharp clusters, it is more difficult to analyze the ligand shell. In contrast to larger nanoparticles, ultrasmall nanoparticles cause only a moderate distortion of the NMR signal, making NMR spectroscopy a qualitative as well as a quantitative probe to assess the nature of the ligand shell. The application of isotope-labelled ligands and of two-dimensional NMR techniques can give deeper insight into ligand-nanoparticle interactions. Applications of one- and two-dimensional NMR spectroscopy to analyze ultrasmall nanoparticles are presented with suitable examples, including a critical discussion of the limitations of NMR spectroscopy on nanoparticles.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen 45117 Essen Germany
| | - Matthias Epple
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
7
|
Fischer N, Tóth A, Jancsó A, Thulstrup P, Diness F. Inducing α-Helicity in Peptides by Silver Coordination to Cysteine. Chemistry 2024; 30:e202304064. [PMID: 38456607 DOI: 10.1002/chem.202304064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Short peptide sequences consisting of two cysteine residues separated by three other amino acids display complete change from random coil to α-helical secondary structure in response to addition of Ag+ ions. The folded CXXXC/Ag+ complex involves formation of multinuclear Ag+ species and is stable in a wide pH range from below 3 to above 8. The complex is stable through reversed-phase HPLC separation as well as towards a physiological level of chloride ions, based on far-UV circular dichroism spectroscopy. In electrospray MS under acidic conditions a peptide dimer with four Ag+ ions bound was observed, and modelling based on potentiometric experiments supported this to be the dominating complex at neutral pH together with a peptide dimer with 3 Ag+ and one proton at lower pH. The complex was demonstrated to work as a N-terminal nucleation site for inducing α-helicity into longer peptides. This type of silver-mediated peptide assembly and folding may be of more general use for stabilizing not only peptide folding but also for controlling oligomerization even under acidic conditions.
Collapse
Affiliation(s)
- Niklas Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Annamária Tóth
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Attila Jancsó
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Peter Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| |
Collapse
|
8
|
Wagner LS, Prymak O, Schaller T, Beuck C, Loza K, Niemeyer F, Gumbiowski N, Kostka K, Bayer P, Heggen M, Oliveira CLP, Epple M. The Molecular Footprint of Peptides on the Surface of Ultrasmall Gold Nanoparticles (2 nm) Is Governed by Steric Demand. J Phys Chem B 2024; 128:4266-4281. [PMID: 38640461 DOI: 10.1021/acs.jpcb.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.
Collapse
Affiliation(s)
- Lisa-Sofie Wagner
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Christine Beuck
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Peter Bayer
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
9
|
Abstract
ConspectusIn this Account, we describe our research into ultrasmall nanoparticles, including their unique properties, and outline some of the new opportunities they offer. We will summarize our perspective on the current state of the field and highlight what we see as key questions that remain to be solved. First, there are several nanostructure size-scale regimes, with qualitatively distinct functional biological attributes. Broadly generalized, larger particles (e.g., larger than 300 nm) tend to be more efficiently swept away by the first line of the immune system (for example macrophages). In the "middle-sized" regime (20-300 nm), nanoparticle surfaces and shapes can be recognized by energy-dependent cellular reorganizations, then organized locally in a spatial and temporally coherent way. That energy is gated and made available by specific cellular recognition processes. The relationship between particle surface design, endogenously derived nonspecific biomolecular corona, and architectural features recognized by the cell is complex and only purposefully and very precisely designed nanoparticle architectures are able to navigate to specific targets. At sufficiently small sizes (<10 nm including the ligand shell, associated with a core diameter of a few nm at most) we enter the "quasi-molecular regime" in which the endogenous biomolecular environment exchanges so rapidly with the ultrasmall particle surface that larger scale cellular and immune recognition events are often greatly simplified. As an example, ultrasmall particles can penetrate cellular and biological barriers within tissue architectures via passive diffusion, in much the same way as small molecule drugs do. An intriguing question arises: what happens at the interface of cellular recognition and ultrasmall quasi-molecular size regimes? Succinctly put, ultrasmall conjugates can evade defense mechanisms driven by larger scale cellular nanoscale recognition, enabling them to flexibly exploit molecular interaction motifs to interact with specific targets. Numerous advances in control of architecture that take advantage of these phenomena have taken place or are underway. For instance, syntheses can now be sufficiently controlled that it is possible to make nanoparticles of a few hundreds of atoms or metalloid clusters of several tens of atoms that can be characterized by single crystal X-ray structure analysis. While the synthesis of atomically precise clusters in organic solvents presents challenges, water-based syntheses of ultrasmall nanoparticles can be upscaled and lead to well-defined particle populations. The surface of ultrasmall nanoparticles can be covalently modified with a wide variety of ligands to control the interactions of these particles with biosystems, as well as drugs and fluorophores. And, in contrast to larger particles, many advanced molecular analytical and separation tools can be applied to understand their structure. For example, NMR spectroscopy allows us to obtain a detailed image of the particle surface and the attached ligands. These are considerable advantages that allow further elaboration of the level of architectural control and characterization of the ultrasmall structures required to access novel functional regimes and outcomes. The ultrasmall nanoparticle regime has a unique status and provides a potentially very interesting direction for development.
Collapse
Affiliation(s)
- Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Vincent M Rotello
- Charles A. Goessmann Professor of Chemistry and University Distinguished Professor, Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01002, United States
| | - Kenneth Dawson
- UCD School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Wolff N, Loza K, Heggen M, Schaller T, Niemeyer F, Bayer P, Beuck C, Oliveira CLP, Prymak O, Weidenthaler C, Epple M. Ultrastructure and Surface Composition of Glutathione-Terminated Ultrasmall Silver, Gold, Platinum, and Alloyed Silver-Platinum Nanoparticles (2 nm). Inorg Chem 2023; 62:17470-17485. [PMID: 37820300 DOI: 10.1021/acs.inorgchem.3c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Essen 45117, Germany
| | | | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| |
Collapse
|
11
|
Gao Y, Yang P, Zhu J. Particle size-dependent effects of silver nanoparticles on swim bladder damage in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114363. [PMID: 36508826 DOI: 10.1016/j.ecoenv.2022.114363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Particle size-dependent biological effects of silver nanoparticles (AgNPs) are of great interest; however, the mechanism of action of silver ions (Ag+) released from AgNPs concerning AgNP particle size remains unclear. Thus, we evaluated the influence of particle size (20, 40, 60, and 80 nm) on the acute 96-h bioaccumulation and toxicity (swim bladder damage) of AgNPs in zebrafish (Danio rerio) larvae, with a focus on the mechanism of action of Ag+ released from differently sized AgNPs. The 40- and 60-nm AgNPs were more toxic than the 20- and 80-nm versions in terms of inflammation and oxidative damage to the swim bladder, as indicated by inhibition of type 2 iodothyroxine deiodinase enzyme activity, mitochondrial injury, and reduced 30-50% adenosine triphosphate content. Furthermore, up-regulation and down-regulation of swim bladder development-related gene expression was not observed for pbx1a and anxa5, but up-regulation expression of shha and ihha was observed with no statistical significance. That 20-nm AgNPs were less toxic was attributed to their rapid elimination from larvae in comparison with the elimination of 40-, 60-, and 80-nm AgNPs; thus, less Ag+ was released in 20-nm AgNP-exposed larvae. Failed inflation of swim bladders was affected by released Ag+ rather than AgNPs themselves. Overall, we reveal the toxicity contribution of Ag+ underlying the observed size-dependent effects of AgNPs and provide a scientific basis for comprehensively assessing the ecological risk and biosafety of AgNPs.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province (Zhejiang Shuren University), Hangzhou 310015, PR China.
| | - Pengyuan Yang
- College of Grain, Jilin Business and Technology College, Jilin 130507, PR China
| | - Jingxue Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
12
|
Wolff N, Kollenda S, Klein K, Loza K, Heggen M, Brochhagen L, Witzke O, Krawczyk A, Hilger I, Epple M. Silencing of proinflammatory NF-κB and inhibition of herpes simplex virus (HSV) replication by ultrasmall gold nanoparticles (2 nm) conjugated with small-interfering RNA. NANOSCALE ADVANCES 2022; 4:4502-4516. [PMID: 36341304 PMCID: PMC9595109 DOI: 10.1039/d2na00250g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/03/2022] [Indexed: 06/09/2023]
Abstract
Azide-terminated ultrasmall gold nanoparticles (2 nm gold core) were covalently functionalized with alkyne-terminated small-interfering siRNA duplexes by copper-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry). The nanoparticle core was visualized by transmission electron microscopy. The number of attached siRNA molecules per nanoparticle was determined by a combination of atomic absorption spectroscopy (AAS; for gold) and UV-Vis spectroscopy (for siRNA). Each nanoparticle carried between 6 and 10 siRNA duplex molecules which corresponds to a weight ratio of siRNA to gold of about 2.2 : 1. Different kinds of siRNA were conjugated to the nanoparticles, depending on the gene to be silenced. In general, the nanoparticles were readily taken up by cells and highly efficient in gene silencing, in contrast to free siRNA. This was demonstrated in HeLa-eGFP cells (silencing of eGFP) and in LPS-stimulated macrophages (silencing of NF-κB). Furthermore, we demonstrated that nanoparticles carrying antiviral siRNA potently inhibited the replication of Herpes simplex virus 2 (HSV-2) in vitro. This highlights the strong potential of siRNA-functionalized ultrasmall gold nanoparticles in a broad spectrum of applications, including gene silencing and treatment of viral infections, combined with a minimal dose of gold.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Kai Klein
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 52428 Jülich Germany
| | - Leonie Brochhagen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen Hufelandstr. 55 45147 Essen Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen Hufelandstr. 55 45147 Essen Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen Hufelandstr. 55 45147 Essen Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
13
|
Sokolova V, Ebel JF, Kollenda S, Klein K, Kruse B, Veltkamp C, Lange CM, Westendorf AM, Epple M. Uptake of Functional Ultrasmall Gold Nanoparticles in 3D Gut Cell Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201167. [PMID: 35712760 DOI: 10.1002/smll.202201167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Ultrasmall gold nanoparticles (2 nm) easily penetrate the membranes of intestinal murine epithelial cells (MODE-K) and colorectal cancer cells (CT-26). They are also taken up by 3D spheroids (400 µm) of these cell types and primary gut organoids (500 µm). In contrast, dissolved dyes are not taken up by any of these cells or 3D structures. The distribution of fluorescent ultrasmall gold nanoparticles inside cells, spheroids, and gut organoids is examined by confocal laser scanning microscopy. Nanoparticles conjugated with the cytostatic drug doxorubicin and a fluorescent dye exhibit significantly greater cytotoxicity toward CT-26 tumor spheroids than equally concentrated dissolved doxorubicin, probably because they enter the interior of a spheroid much more easily than dissolved doxorubicin. Comprehensive analyses show that the cellular uptake of ultrasmall gold nanoparticles occurs by different endocytosis pathways.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117, Essen, Germany
| | - Jana-Fabienne Ebel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117, Essen, Germany
| | - Kai Klein
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117, Essen, Germany
| | - Benedikt Kruse
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117, Essen, Germany
| | - Claudia Veltkamp
- Department of Gastroenterology, Hepatology and Transplantation Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, Germany
| | - Christian M Lange
- Department of Gastroenterology, Hepatology and Transplantation Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117, Essen, Germany
| |
Collapse
|
14
|
Wetzel O, Prymak O, Loza K, Gumbiowski N, Heggen M, Bayer P, Beuck C, Weidenthaler C, Epple M. Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorg Chem 2022; 61:5133-5147. [PMID: 35285631 DOI: 10.1021/acs.inorgchem.2c00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
15
|
Gao Y, Wu W, Qiao K, Feng J, Zhu L, Zhu X. Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes. WATER RESEARCH 2021; 204:117603. [PMID: 34536684 DOI: 10.1016/j.watres.2021.117603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Determining the bioavailability and toxicity mechanism of silver nanoparticles (AgNPs) is challenging as Ag+ is continuously released by external or internal AgNP dissolution in the actual exposure system (regardless of the laboratory or the natural environment). Here a novel pulsed-gradient Ag+ (AgNO3) exposure was conducted with zebrafish (Danio rerio) larvae to simulate dissolved gradient concentrations of Ag+ from polyvinylpyrrolidone (PVP)-coated AgNPs. The accumulation and toxicity of the pulsed-gradient Ag+ (AgNO3) and, in the meantime, the released Ag+ from PVP-AgNPs were predicted using a toxicokinetic-toxicodynamic (TK-TD) model with obtained Ag+ parameters. In order to further understand the possible mechanism of PVP-AgNP releasing Ag+ in the body, subcellular fractions (S9) of zebrafish were also used to incubate with AgNPs in vitro to mimic the realistic in vivo scenarios. In the TK process, in vivo analysis showed that AgNPs released around twice as many Ag+ into the body than were detected with a single Ag+ pulse-exposure system; this was supported by evidence that subcellular S9 fractions might cause the PVP-AgNPs to lose the capping agent and favor Ag+ release. In the TD process, toxicity (survival rate) was predicted by the total bodily Ag(I) concentration, suggesting that AgNP toxicity in larvae was mainly due to gradually released Ag+ rather than AgNPs themselves. This study helps clarify the role of Ag+ in AgNP toxicity and offers a novel framework by which to investigate the toxicity of metal nanoparticles and corresponding metal ions in biological systems.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Weiran Wu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Kexin Qiao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
16
|
Hosseini S, Wetzel O, Kostka K, Heggen M, Loza K, Epple M. Pathways for Oral and Rectal Delivery of Gold Nanoparticles (1.7 nm) and Gold Nanoclusters into the Colon: Enteric-Coated Capsules and Suppositories. Molecules 2021; 26:5069. [PMID: 34443657 PMCID: PMC8401122 DOI: 10.3390/molecules26165069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Two ways to deliver ultrasmall gold nanoparticles and gold-bovine serum albumin (BSA) nanoclusters to the colon were developed. First, oral administration is possible by incorporation into gelatin capsules that were coated with an enteric polymer. These permit the transfer across the stomach whose acidic environment damages many drugs. The enteric coating dissolves due to the neutral pH of the colon and releases the capsule's cargo. Second, rectal administration is possible by incorporation into hard-fat suppositories that melt in the colon and then release the nanocarriers. The feasibility of the two concepts was demonstrated by in-vitro release studies and cell culture studies that showed the easy redispersibility after dissolution of the respective transport system. This clears a pathway for therapeutic applications of drug-loaded nanoparticles to address colon diseases, such as chronic inflammation and cancer.
Collapse
Affiliation(s)
- Shabnam Hosseini
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Oliver Wetzel
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Kathrin Kostka
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany; (S.H.); (O.W.); (K.K.); (K.L.)
| |
Collapse
|