1
|
Kouhpanji MRZ, Zhang Y, Um J, Srinivasan K, Sharma A, Shore D, Gao Z, Chen Y, Harpel A, Porshokouh ZN, Gage TE, Dragos-Pinzaru O, Tabakovic I, Visscher PB, Bischof J, Modiano JF, Franklin R, Stadler BJH. Bioapplications of Magnetic Nanowires: Barcodes, Biocomposites, Heaters. IEEE TRANSACTIONS ON MAGNETICS 2022; 58:5200406. [PMID: 36864851 PMCID: PMC9976993 DOI: 10.1109/tmag.2022.3151608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic nanowires (MNWs) can have their moments reversed via several mechanisms that are controlled using the composition, length, diameter, and density of nanowires in arrays as-synthesized or as individual nanoparticles in assays or gels. This tailoring of magnetic reversal leads to unique properties that can be used as a signature for reading out the type of MNW for applications as nano-barcodes. When synthesized inside track-etched polycarbonate membranes, the resulting MNW-embedded membranes can be used as biocompatible bandaids for detection without contact or optical sighting. When etched out of the growth template, free-floating MNWs are internalized by cells at 37 °C such that cells and/or exosomes can be collected and detected. In applications of cryopreservation, MNWs can be suspended in cryopreservation agents (CPAs) for injection into the blood vessels of tissues and organs as they are vitrified to -200 °C. Using an alternating magnetic field, the MNWs can then be nanowarmed rapidly to prevent crystallization and uniformly to prevent cracking of specimens, for example, as grafts or transplants. This invited paper is a review of recent progress in the specific bioapplications of MNWs to barcodes, biocomposites, and nanowarmers.
Collapse
Affiliation(s)
| | - Yali Zhang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Joseph Um
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kartihik Srinivasan
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Anirudh Sharma
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel Shore
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Yicong Chen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Allison Harpel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Zohreh Nemati Porshokouh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Thomas E Gage
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Oana Dragos-Pinzaru
- National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania
| | - Ibro Tabakovic
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - P B Visscher
- Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35401 USA
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Falcon Heights, MN 55108 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rhonda Franklin
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Bethanie J H Stadler
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
2
|
Zamani Kouhpanji MR, Stadler BJH. Magnetic Nanowires for Nanobarcoding and Beyond. SENSORS (BASEL, SWITZERLAND) 2021; 21:4573. [PMID: 34283095 PMCID: PMC8271806 DOI: 10.3390/s21134573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
Multifunctional magnetic nanowires (MNWs) have been studied intensively over the last decades, in diverse applications. Numerous MNW-based systems have been introduced, initially for fundamental studies and later for sensing applications such as biolabeling and nanobarcoding. Remote sensing of MNWs for authentication and/or anti-counterfeiting is not only limited to engineering their properties, but also requires reliable sensing and decoding platforms. We review the latest progress in designing MNWs that have been, and are being, introduced as nanobarcodes, along with the pros and cons of the proposed sensing and decoding methods. Based on our review, we determine fundamental challenges and suggest future directions for research that will unleash the full potential of MNWs for nanobarcoding applications.
Collapse
Affiliation(s)
- Mohammad Reza Zamani Kouhpanji
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bethanie J. H. Stadler
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|