1
|
Morsali MA, Shekaari H, Golmohammadi B. Hydration behavior of L-proline in the presence of mono, bis, tris-(2-hydroxyethyl) ammonium acetate protic ionic liquids: Thermophysical properties. Sci Rep 2024; 14:27229. [PMID: 39516508 PMCID: PMC11549441 DOI: 10.1038/s41598-024-77341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The hydration behavior of amino acids, essential for biological macromolecules, is influenced by ammonium biomaterials. The protic ionic liquids (PILs) are gaining attention in the food and pharmaceutical industries due to their nontoxicity and adjustable properties. Thus, study of the amino acids, such as L-proline, in the presence of PILs is crucial for understanding their hydration behavior. In this work, the effect of PILs, including mono, bis, tris (2-hydroxyethyl)ammonium acetate protic ionic liquids that might be naturally produced in human body, on L-proline hydration behavior was studied using COSMO calculations and thermophysical measurements. Measurements were the density, speed of sound, viscosity, and refractive index data of the solutions (L-proline + PILs + water) at various PIL concentrations at temperatures (298.15 to 318.15) K and under atmospheric pressure. The study indicates L-proline has weaker interactions with water compared to PILs ([2-HEA][Ac], [bis-2-HEA][Ac], and [tris-2-HEA][Ac]) due to its compact structure and lower negative dielectric energy. PILs interact more strongly with water through hydrogen bonding. Increasing temperature affects L-proline's hydration layer, releasing more water molecules compared to PIL solutions. This effect is more pronounced with [tris-2-HEA][Ac], likely due to its larger size and complex structure. While L-proline promotes an ordered water structure, PILs can disrupt this by rearranging water molecules and forming their own hydrogen bonds.
Collapse
Affiliation(s)
- Mohammad Amin Morsali
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hemayat Shekaari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Behrang Golmohammadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Zhao Y, Cortes-Huerto R, Mukherji D. A Simple Generic Model of Elastin-Like Polypeptides with Proline Isomerization. Macromol Rapid Commun 2024; 45:e2400304. [PMID: 38837515 DOI: 10.1002/marc.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
A generic model of elastin-like polypeptides (ELP) is derived that includes proline isomerization (ProI). As a case study, conformational transition of a -[valine-proline-glycine-valine-glycine]- sequence is investigated in aqueous ethanol mixtures. While the non-bonded interactions are based on the Lennard-Jones (LJ) parameters, the effect of ProI is incorporated by tuning the intramolecular 3- and 4-body interactions known from the underlying all-atom simulations into the generic model. One of the key advantages of such a minimalistic model is that it readily decouples the effects of geometry and the monomer-solvent interactions due to the presence of ProI, thus gives a clearer microscopic picture that is otherwise rather nontrivial within the all-atom setups. These results are consistent with the available all-atom and experimental data. The model derived here may pave the way to investigate large scale self-assembly of ELPs or biomimetic polymers in general.
Collapse
Affiliation(s)
- Yani Zhao
- Bruker Daltonics GmbH & Co. KG, 28359, Bremen, Germany
| | | | - Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
3
|
Zhao Y, Bharadwaj S, Myers RL, Okur HI, Bui PT, Cao M, Welsh LK, Yang T, Cremer PS, van der Vegt NFA. Solvation Behavior of Elastin-like Polypeptides in Divalent Metal Salt Solutions. J Phys Chem Lett 2023; 14:10113-10118. [PMID: 37921693 DOI: 10.1021/acs.jpclett.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The effects of CaCl2 and MgCl2 on the cloud point temperature of two different elastin-like polypeptides (ELPs) were studied using a combination of cloud point measurements, molecular dynamics simulations, and infrared spectroscopy. Changes in the cloud point for the ELPs in aqueous divalent metal cation solutions were primarily governed by two competing interactions: the cation-amide oxygen electrostatic interaction and the hydration of the cation. In particular, Ca2+ cations can more readily shed their hydration shells and directly contact two amide oxygens by the formation of ion bridges. By contrast, Mg2+ cations were more strongly hydrated and preferred to partition toward the amide oxygens along with their hydration shells. In fact, although hydrophilic ELP V5A2G3 was salted-out at low concentrations of MgCl2, it was salted-in at higher salt concentrations. By contrast, CaCl2 salted the ELP sharply out of solution at higher salt concentrations because of the bridging effect.
Collapse
Affiliation(s)
- Yani Zhao
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Swaminath Bharadwaj
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Department of Chemical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Ryan L Myers
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Halil I Okur
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Pho T Bui
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Mengrui Cao
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Lauren K Welsh
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Tinglu Yang
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Paul S Cremer
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | - Nico F A van der Vegt
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Mukherji D, Kremer K. Smart Polymers for Soft Materials: From Solution Processing to Organic Solids. Polymers (Basel) 2023; 15:3229. [PMID: 37571124 PMCID: PMC10421237 DOI: 10.3390/polym15153229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Polymeric materials are ubiquitous in our everyday life, where they find a broad range of uses-spanning across common household items to advanced materials for modern technologies. In the context of the latter, so called "smart polymers" have received a lot of attention. These systems are soluble in water below their lower critical solution temperature Tℓ and often exhibit counterintuitive solvation behavior in mixed solvents. A polymer is known as smart-responsive when a slight change in external stimuli can significantly change its structure, functionm and stability. The interplay of different interactions, especially hydrogen bonds, can also be used for the design of lightweight high-performance organic solids with tunable properties. Here, a general scheme for establishing a structure-property relationship is a challenge using the conventional simulation techniques and also in standard experiments. From the theoretical side, a broad range of all-atom, multiscale, generic, and analytical techniques have been developed linking monomer level interaction details with macroscopic material properties. In this review, we briefly summarize the recent developments in the field of smart polymers, together with complementary experiments. For this purpose, we will specifically discuss the following: (1) the solution processing of responsive polymers and (2) their use in organic solids, with a goal to provide a microscopic understanding that may be used as a guiding tool for future experiments and/or simulations regarding designing advanced functional materials.
Collapse
Affiliation(s)
- Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| |
Collapse
|
5
|
Morozova TI, García NA, Matsarskaia O, Roosen-Runge F, Barrat JL. Structural and Dynamical Properties of Elastin-Like Peptides near Their Lower Critical Solution Temperature. Biomacromolecules 2023; 24:1912-1923. [PMID: 36877869 DOI: 10.1021/acs.biomac.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Elastin-like peptides (ELPs) are artificially derived intrinsically disordered proteins (IDPs) mimicking the hydrophobic repeat unit in the protein elastin. ELPs are characterized by a lower critical solution temperature (LCST) in aqueous media. Here, we investigate the sequence GVG(VPGVG)3 over a wide range of temperatures (below, around, and above the LCST) and peptide concentrations employing all-atom molecular dynamics simulations, where we focus on the role of intra- and interpeptide interactions. We begin by investigating the structural properties of a single peptide that demonstrates a hydrophobic collapse with temperature, albeit moderate, because the sequence length is short. We observe a change in the interaction between two peptides from repulsive to attractive with temperature by evaluating the potential of mean force, indicating an LCST-like behavior. Next, we explore dynamical and structural properties of peptides in multichain systems. We report the formation of dynamical aggregates with coil-like conformation, in which valine central residues play an important role. Moreover, the lifetime of contacts between chains strongly depends on the temperature and can be described by a power-law decay that is consistent with the LCST-like behavior. Finally, the peptide translational and internal motion are slowed by an increase in the peptide concentration and temperature.
Collapse
Affiliation(s)
| | - Nicolás A García
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Olga Matsarskaia
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | | |
Collapse
|
6
|
Lin TY, Ma YW, Tsai MY. Early-Stage Oligomerization of Prion-like Polypeptides Reveals the Molecular Mechanism of Amyloid-Disrupting Capacity by Proline Residues. J Phys Chem B 2023; 127:1074-1088. [PMID: 36705662 PMCID: PMC9924260 DOI: 10.1021/acs.jpcb.2c05463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/09/2022] [Indexed: 01/28/2023]
Abstract
Proline cis/trans isomerization governs protein local conformational changes via its local mechanical rigidity. The amyloid-disrupting capacity of proline is widely acknowledged; however, the molecular mechanism is still not clear. To understand how proline residues in polypeptide chains influence amyloid propensity, we study several truncated sequences of the TDP-43 C-terminal region (287-322) and their triple proline variants (308PPP310). We use coarse-grained molecular simulation to study the time evolution of the process of aggregation in the early stages in an effective high-concentration condition (∼25 mM). This ensures the long time scales for protein association at laboratory concentrations. We use several experimentally determined structure templates as initial structures of monomer conformations. We carry out oligomer size analysis and cluster analysis, along with several structural measures, to characterize the size distributions of oligomers and their morphological/structural properties. We show that average oligomer size is not a good indicator of amyloid propensity. Structural order and/or morphological properties are better alternatives. We show that proline variants can efficiently maintain the formation of large "ordered" oligomers of shorter truncated sequences, i.e., 307-322. This "order" maintenance is weakened when using longer truncated sequences (i.e., 287-322), leading to the formation of "disordered" oligomers. From an energy trade-off perspective, if the entropic effect is weak (short sequence length), the shape-complementarity of proline variants effectively guides the oligomerization process to form "ordered" oligomer intermediates. This leads to a distinct aggregation pathway that promotes amyloid formation (on-pathway). Strong entropic effects (long sequence length), however, would cause the formation of "disordered" oligomers. This in turn will suppress amyloid formation (off-pathway). The proline shape-complementary effects provide a guided morphological restraint to facilitate the pathways of amyloid formation. Our study supports the importance of structure-based kinetic heterogeneity of prion-like sequence fragments in driving different aggregation pathways. This work sheds light on the role of morphological and structural order of early-stage oligomeric species in regulating amyloid-disrupting capacity by prolines.
Collapse
Affiliation(s)
- Tong-You Lin
- Department of Chemistry, Tamkang
University, New Taipei
City, Taiwan251301
| | - Yuan-Wei Ma
- Department of Chemistry, Tamkang
University, New Taipei
City, Taiwan251301
| | | |
Collapse
|
7
|
Arora L, Mukhopadhyay S. Conformational Characteristics and Phase Behavior of Intrinsically Disordered Proteins─Where Physical Chemistry Meets Biology. J Phys Chem B 2022; 126:5137-5139. [PMID: 35860904 DOI: 10.1021/acs.jpcb.2c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali, SAS Nagar, Knowledge City, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali, SAS Nagar, Knowledge City, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali, SAS Nagar, Knowledge City, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali, SAS Nagar, Knowledge City, Punjab 140306, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali, SAS Nagar, Knowledge City, Punjab 140306, India
| |
Collapse
|
8
|
Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. SOFT MATTER 2022; 18:2884-2909. [PMID: 35311857 DOI: 10.1039/d2sm00146b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Bart-Jan Niebuur
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Nothdurft
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Nico F A van der Vegt
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Christine M Papadakis
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
9
|
The Effects of Proline Isomerization on the Solvation Behavior of Elastin‐Like Polypeptides in Water‐Ethanol Mixtures. Macromol Rapid Commun 2022; 43:e2100907. [DOI: 10.1002/marc.202100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Indexed: 11/07/2022]
|
10
|
Bharadwaj S, Nayar D, Dalgicdir C, van der Vegt NFA. An interplay of excluded-volume and polymer-(co)solvent attractive interactions regulates polymer collapse in mixed solvents. J Chem Phys 2021; 154:134903. [PMID: 33832270 DOI: 10.1063/5.0046746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cosolvent effects on the coil-globule transitions in aqueous polymer solutions are not well understood, especially in the case of amphiphilic cosolvents that preferentially adsorb on the polymer and lead to both polymer swelling and collapse. Although a predominant focus in the literature has been placed on the role of polymer-cosolvent attractive interactions, our recent work has shown that excluded-volume interactions (repulsive interactions) can drive both preferential adsorption of the cosolvent and polymer collapse via a surfactant-like mechanism. Here, we further study the role of polymer-(co)solvent attractive interactions in two kinds of polymer solutions, namely, good solvent (water)-good cosolvent (alcohol) (GSGC) and poor solvent-good cosolvent (PSGC) solutions, both of which exhibit preferential adsorption of the cosolvent and a non-monotonic change in the polymer radius of gyration with the addition of the cosolvent. Interestingly, at low concentrations, the polymer-(co)solvent energetic interactions oppose polymer collapse in the GSGC solutions and contrarily support polymer collapse in the PSGC solutions, indicating the importance of the underlying polymer chemistry. Even though the alcohol molecules are preferentially adsorbed on the polymer, the trends of the energetic interactions at low cosolvent concentrations are dominated by the polymer-water energetic interactions in both the cases. Therefore, polymer-(co)solvent energetic interactions can either reinforce or compensate the surfactant-like mechanism, and it is this interplay that drives coil-to-globule transitions in polymer solutions. These results have implications for rationalizing the cononsolvency transitions in real systems such as polyacrylamides in aqueous alcohol solutions where the understanding of microscopic driving forces is still debatable.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Divya Nayar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Cahit Dalgicdir
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|