1
|
Hamano Y, Otsuka T, Higashiguchi T, Uehara N, Inagawa A. Kinetic study on bimolecular photochemical quenching of tris(2,2'-bipyridyl)ruthenium(II) complex in water-ethylene glycol binary media. ANAL SCI 2025; 41:165-172. [PMID: 39417985 DOI: 10.1007/s44211-024-00680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The bimolecular photochemical quenching of the tris(2,2'-bipyridyl)ruthenium (II) complex by ferricyanide ions in water-ethylene glycol binary media was investigated using a spectrophotometric approach, as previously reported by our research group. Time-resolved spectroscopy revealed that dynamic photochemical quenching occurred via a diffusion-dominated pathway. The static quenching process was found to occur significantly when the concentration of ethylene glycol was greater than 40 wt%. The analysis of the Stern-Volmer plots revealed that the emitters and quenchers tended to show ionic associations in water-ethylene glycol compared to our previous results with a water-glycerol binary solvent system. This is attributed to hydrophobicity, which is consistent with pioneering works that report that the addition of ethylene glycol to pure water forms hydrophobic regions, leading to dehydration of the complex ions.
Collapse
Affiliation(s)
- Yuki Hamano
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan
| | - Takuhiro Otsuka
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Takeshi Higashiguchi
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan
| | - Nobuo Uehara
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan
| | - Arinori Inagawa
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan.
| |
Collapse
|
2
|
Hamano Y, Inagawa A, Otsuka T, Kageyama R, Ogawa J, Roppongi M, Higashiguchi T, Uehara N. Elucidating the Quenching Mechanism of Tris(2,2'-bipyridyl)ruthenium(II) Complex in the Water-Glycerol Binary System Based on the Microscopic Structure of the Media. J Phys Chem B 2024; 128:1771-1779. [PMID: 38329904 DOI: 10.1021/acs.jpcb.3c07882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Kinetic studies on the photochemical quenching reaction of the tris(2,2'-bipyridyl) ruthenium(II) complex ([Ru(bpy)3]2+) in water-glycerol binary media were conducted based on the Einstein-Smoluchowski (E-S) theory. Dynamic and static quenching behaviors were analyzed by comparing results from time-resolved spectroscopy and emission spectroscopy. While the dynamic quenching reaction aligns well with the E-S theory, static quenching was observed, leading to a notable increase in the overall photoquenching reaction rate constant. Employing chromatography and infrared spectroscopy, we correlated the microscopic molecular structure of the binary solvent system and the solvation environment around the emitters with the reaction mechanism. This correlation was found to correspond to ion pair formation and the confinement effect of the emitter, respectively.
Collapse
Affiliation(s)
- Yuki Hamano
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Arinori Inagawa
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Takuhiro Otsuka
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551,Japan
| | - Ryo Kageyama
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Juri Ogawa
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Makoto Roppongi
- Center for Instrumental Analysis, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Takeshi Higashiguchi
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Nobuo Uehara
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| |
Collapse
|
3
|
Miyagawa A, Ueda Y, Nakatani K. Molecular crowding effect in Hantzch pyridine synthesis in polyethylene glycol aqueous solution. Phys Chem Chem Phys 2024; 26:5615-5620. [PMID: 38288480 DOI: 10.1039/d3cp06104c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In a molecular crowding environment, the kinetics and thermodynamics differ from those in a diluted solution. Although the molecular crowding effect has been extensively investigated, its fundamental kinetics and thermodynamics remain unclear. In this study, we investigated the change in the rate constant (k) of the Hantzch pyridine reaction in a molecular crowding environment using polyethylene glycol (PEG). While the k value increased to a PEG concentration (CPEG) of 10 vol%, a decreasing trend was observed for CPEG > 20 vol%. This intriguing behavior was analyzed based on the increase in reactant activity due to volume exclusion and the decrease in water activity due to osmotic pressure. Volume exclusion and osmotic pressure had opposing effects on the reaction, which were positive for volume exclusion and negative for osmotic pressure. We found that k decreased when the negative effect of the osmotic pressure surpassed the volume exclusion effect.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuyuki Ueda
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
4
|
Miyagawa A, Komatsu H, Nagatomo S, Nakatani K. Thermodynamic Complexation Mechanism of Zinc Ion with 8-Hydroxyquinoline-5-Sulfonic Acid in Molecular Crowding Environment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
J-aggregation of 5, 10, 15, 20-tetraphenyl-21H, 23H-porphinetetrasulfonic acid in a molecular crowding environment simulated using dextran. ANAL SCI 2022; 38:1505-1512. [PMID: 36050568 DOI: 10.1007/s44211-022-00185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
In a molecular crowding environment, different thermodynamics is often observed in a dilute solution. One such example is the promotion of the formation of amyloids, which are causal agents of Alzheimer's disease. Although a considerable number of molecular crowding studies have been reported, its effect remains unclear. In this study, we investigated a J-aggregation of a porphyrin derivative, 5, 10, 15, 20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (TPPS), in a molecular crowding environment simulated by dextran (Dex) in HClO4, HCl, and NaCl solutions. The changes in the number of monomers in the J-aggregate (n) with the concentration of Dex (CDex) depended on the type of solution. No change in n was observed in the NaCl solution, which indicated that the Dex solution did not affect the J-aggregation because of the ionic strength effect. In the HCl solution, the aggregation behavior changed with the pH. Further, at a low pH, the electrostatic interactions promoted J-aggregation by the volume exclusion of Dex, while the aggregation was suppressed at a high pH owing to steric hindrance. A different aggregation mechanism, involving the hydrogen bonding between NH in the center of the TPPS macrocyclic frame and the SO3H and ClO4- functional groups, was responsible for the J-aggregation in the HClO4 solution. Moreover, the n value increased owing to the volume exclusion effect. We expect that this study will be useful for further elucidation of the molecular crowding effect.
Collapse
|
6
|
Miyagawa A, Komatsu H, Nagatomo S, Nakatani K. Acid Dissociation Behavior of 8-Hydroxyquinoline-5-Sulfonic Acid in Molecular Crowding Environment Modeled Using Polyethylene Glycol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|